-
Notifications
You must be signed in to change notification settings - Fork 2
/
train_CPGA.py
448 lines (376 loc) · 15.8 KB
/
train_CPGA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
import os
import math
import time
import yaml
import argparse
import torch
import torch.optim as optim
import os.path as op
import numpy as np
from tqdm import tqdm
from torch.nn.parallel import DistributedDataParallel as DDP
from collections import OrderedDict
import utils # my tool box
import dataset
from net_CPGA import CPGA # MFVQE
from datetime import datetime
# find_unused_parameters = True
# os.environ['LOCAL_RANK'] = 0
def receive_arg():
"""Process all hyper-parameters and experiment settings.
Record in opts_dict."""
parser = argparse.ArgumentParser()
parser.add_argument(
'--opt_path', type=str, default='option_R3_mfqev2_1D.yml',
help='Path to option YAML file.'
)
parser.add_argument(
'--local_rank', type=int, default=0,
help='Distributed launcher requires.'
)
args = parser.parse_args()
with open(args.opt_path, 'r') as fp:
opts_dict = yaml.load(fp, Loader=yaml.FullLoader)
opts_dict['opt_path'] = args.opt_path
opts_dict['train']['rank'] = args.local_rank
if opts_dict['train']['exp_name'] == None:
opts_dict['train']['exp_name'] = utils.get_timestr()
opts_dict['train']['log_path'] = op.join(
"exp", opts_dict['train']['exp_name'], "log.log"
)
opts_dict['train']['checkpoint_save_path_pre'] = op.join(
"exp", opts_dict['train']['exp_name'], "ckp_"
)
opts_dict['train']['num_gpu'] = torch.cuda.device_count()
if opts_dict['train']['num_gpu'] > 1:
opts_dict['train']['is_dist'] = True
else:
opts_dict['train']['is_dist'] = False
return opts_dict
def main():
# ==========
# parameters
# ==========
opts_dict = receive_arg()
rank = opts_dict['train']['rank']
unit = opts_dict['train']['criterion']['unit']
num_iter = int(opts_dict['train']['num_iter'])
interval_print = int(opts_dict['train']['interval_print'])
interval_val = int(opts_dict['train']['interval_val'])
# ==========
# init distributed training
# ==========
if opts_dict['train']['is_dist']:
utils.init_dist(
local_rank=rank,
backend='nccl'
)
pass
if rank == 0:
log_dir = op.join("exp", opts_dict['train']['exp_name'])
utils.mkdir(log_dir)
log_fp = open(opts_dict['train']['log_path'], 'w')
# log all parameters
msg = (
f"{'<' * 10} Hello {'>' * 10}\n"
f"Timestamp: [{utils.get_timestr()}]\n"
f"\n{'<' * 10} Options {'>' * 10}\n"
f"{utils.dict2str(opts_dict)}"
)
# print(msg)
log_fp.write(msg + '\n')
log_fp.flush()
# ==========
# TO-DO: init tensorboard
# ==========
pass
seed = opts_dict['train']['random_seed']
# >I don't know why should rs + rank
utils.set_random_seed(seed + rank)
torch.backends.cudnn.benchmark = True # speed up
# torch.backends.cudnn.deterministic = True # if reproduce
# create datasets
train_ds_type = opts_dict['dataset']['train']['type']
val_ds_type = opts_dict['dataset']['val']['type']
radius = opts_dict['network']['radius']
assert train_ds_type in dataset.__all__, \
"Not implemented!"
assert val_ds_type in dataset.__all__, \
"Not implemented!"
train_ds_cls = getattr(dataset, train_ds_type)
val_ds_cls = getattr(dataset, val_ds_type)
train_ds = train_ds_cls(
opts_dict=opts_dict['dataset']['train'],
radius=radius
)
val_ds = val_ds_cls(
opts_dict=opts_dict['dataset']['val'],
radius=radius
)
# create datasamplers
train_sampler = utils.DistSampler(
dataset=train_ds,
num_replicas=opts_dict['train']['num_gpu'],
rank=rank,
ratio=opts_dict['dataset']['train']['enlarge_ratio']
)
val_sampler = None # no need to sample val data
# create dataloaders
train_loader = utils.create_dataloader(
dataset=train_ds,
opts_dict=opts_dict,
sampler=train_sampler,
phase='train',
seed=opts_dict['train']['random_seed']
)
val_loader = utils.create_dataloader(
dataset=val_ds,
opts_dict=opts_dict,
sampler=val_sampler,
phase='val'
)
assert train_loader is not None
batch_size = opts_dict['dataset']['train']['batch_size_per_gpu'] * \
opts_dict['train']['num_gpu'] # divided by all GPUs
num_iter_per_epoch = math.ceil(len(train_ds) * \
opts_dict['dataset']['train']['enlarge_ratio'] / batch_size)
num_epoch = math.ceil(num_iter / num_iter_per_epoch)
val_num = len(val_ds)
# create dataloader prefetchers
tra_prefetcher = utils.CPUPrefetcher(train_loader)
val_prefetcher = utils.CPUPrefetcher(val_loader)
# ==========
# create model ,find_unused_parameters=True
# ==========
model = CPGA()
print("Number of Parameters: ", sum([np.prod(p.size()) for p in model.parameters()]))
model = model.to(rank)
if opts_dict['train']['is_dist']:
model = DDP(model, device_ids=[rank],find_unused_parameters=True)
# ==========
# define loss func & optimizer & scheduler & scheduler & criterion
# ==========
assert opts_dict['train']['loss'].pop('type') == 'CharbonnierLoss', \
"Not implemented."
loss_func = utils.CharbonnierLoss(**opts_dict['train']['loss'])
# define optimizer
assert opts_dict['train']['optim'].pop('type') == 'Adam', \
"Not implemented."
optimizer = optim.Adam(
model.parameters(),
**opts_dict['train']['optim']
)
# define scheduler
if opts_dict['train']['scheduler']['is_on']:
assert opts_dict['train']['scheduler'].pop('type') == \
'CosineAnnealingRestartLR', "Not implemented."
del opts_dict['train']['scheduler']['is_on']
scheduler = utils.CosineAnnealingRestartLR(
optimizer,
**opts_dict['train']['scheduler']
)
opts_dict['train']['scheduler']['is_on'] = True
# define criterion
assert opts_dict['train']['criterion'].pop('type') == \
'PSNR', "Not implemented."
criterion = utils.PSNR()
start_iter = 0 # should be restored
start_epoch = start_iter // num_iter_per_epoch
# display and log
if rank == 0:
msg = (
f"\n{'<' * 10} Dataloader {'>' * 10}\n"
f"total iters: [{num_iter}]\n"
f"total epochs: [{num_epoch}]\n"
f"iter per epoch: [{num_iter_per_epoch}]\n"
f"start from iter: [{start_iter}]\n"
f"start from epoch: [{start_epoch}]"
)
print(msg)
log_fp.write(msg + '\n')
log_fp.flush()
if opts_dict['train']['is_dist']:
torch.distributed.barrier() # all processes wait for ending
if rank == 0:
msg = f"\n{'<' * 10} Training {'>' * 10}"
log_fp.write(msg + '\n')
# ==========
# evaluate original performance, e.g., PSNR before enhancement
# ==========
vid_num = val_ds.get_vid_num()
if opts_dict['train']['pre-val'] and rank == 0:
msg = f"\n{'<' * 10} Pre-evaluation {'>' * 10}"
print(msg)
log_fp.write(msg + '\n')
per_aver_dict = {}
for i in range(vid_num):
per_aver_dict[i] = utils.Counter()
pbar = tqdm(
total=val_num,
ncols=opts_dict['train']['pbar_len']
)
# fetch the first batch
val_prefetcher.reset()
val_data = val_prefetcher.next()
while val_data is not None:
# get data
gt_data = val_data['gt'].to(rank) # (B [RGB] H W)
lq_data = val_data['lq'].to(rank) # (B T [RGB] H W)
index_vid = val_data['index_vid'].item()
name_vid = val_data['name_vid'][0] # bs must be 1!
b, _, _, _, _ = lq_data.shape
# eval
batch_perf = np.mean([criterion(lq_data[i,radius,...], gt_data[i,radius,...]) for i in range(b)]) # bs must be 1!
# log
per_aver_dict[index_vid].accum(volume=batch_perf)
# display
pbar.set_description("{:s}: [{:.3f}] {:s}".format(name_vid, batch_perf, unit))
pbar.update()
# fetch next batch
val_data = val_prefetcher.next()
pbar.close()
# log
ave_performance = np.mean([ per_aver_dict[index_vid].get_ave() for index_vid in range(vid_num)])
msg = "> ori performance: [{:.3f}] {:s}".format(ave_performance, unit)
print(msg)
log_fp.write(msg + '\n')
log_fp.flush()
if opts_dict['train']['is_dist']:
torch.distributed.barrier() # all processes wait for ending
if rank == 0:
msg = f"\n{'<' * 10} Training {'>' * 10}"
print(msg)
log_fp.write(msg + '\n')
# create timer
total_timer = utils.Timer() # total tra + val time of each epoch
model.train()
num_iter_accum = start_iter
for current_epoch in range(start_epoch, num_epoch + 1):
if opts_dict['train']['is_dist']:
train_sampler.set_epoch(current_epoch)
# fetch the first batch
tra_prefetcher.reset()
train_data = tra_prefetcher.next()
while train_data is not None:
num_iter_accum += 1
if num_iter_accum > num_iter:
break
# get data
gt_data = train_data['gt'].to(rank) # (B [RGB] H W)
lq_data = train_data['lq'].to(rank) # (B T [RGB] H W)
# pai_data = train_data['PAI'].to(rank) # (B T [RGB] H W)
pred_data = train_data['pred'].to(rank) # (B T [RGB] H W)
mv_data = train_data['mv'].to(rank) # (B T [RGB] H W)
res_data = train_data['residue'].to(rank) # (B T [RGB] H W)
b, T, c, _, _ = lq_data.shape
input_lq = torch.cat([lq_data[:,:,i,...] for i in range(c)], dim=1) # B [R1 ... R7 G1 ... G7 B1 ... B7] H W
input_pred = torch.cat([pred_data[:,:,i,...] for i in range(c)], dim=1) # B [R1 ... R7 G1 ... G7 B1 ... B7] H W
input_mv = torch.where(~torch.isnan(mv_data), mv_data, torch.tensor(0.0).cuda()) # torch.cat([mv_data[:,:,cmv*i:cmv*i+1,...] for i in range(c)], dim=1) # B [R1 ... R7 G1 ... G7 B1 ... B7] H W
input_res = res_data
enhanced_data = model(input_lq, input_mv, input_pred, input_res) # input_pai
loss = loss_func(enhanced_data, gt_data) # + 0.1*loss_func_(input_lq, enhanced_mv)
optimizer.zero_grad() # zero grad
loss.backward() # cal grad
optimizer.step() # update parameters
# update learning rate
if opts_dict['train']['scheduler']['is_on']:
scheduler.step() # should after optimizer.step()
if (num_iter_accum % interval_print == 0) and (rank == 0):
# display & log
lr = optimizer.param_groups[0]['lr']
loss_item = loss.item()
now_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S")
msg = (
f"[{now_time}], "
f"iter: [{num_iter_accum}]/{num_iter}, "
f"epoch: [{current_epoch}]/{num_epoch - 1}, "
"lr: [{:.3f}]x1e-4, loss: [{:.4f}]".format(
lr * 1e4, loss_item
)
)
print(msg)
log_fp.write(msg + '\n')
if ((num_iter_accum % interval_val == 0) or \
(num_iter_accum == num_iter)) and (rank == 0):
# save model
checkpoint_save_path = (
f"{opts_dict['train']['checkpoint_save_path_pre']}"
f"{num_iter_accum}"
".pt"
)
state = {
'num_iter_accum': num_iter_accum,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}
if opts_dict['train']['scheduler']['is_on']:
state['scheduler'] = scheduler.state_dict()
torch.save(state, checkpoint_save_path)
# validation
with torch.no_grad():
per_aver_dict = {}
for index_vid in range(vid_num):
per_aver_dict[index_vid] = utils.Counter()
pbar = tqdm(total=val_num, ncols=opts_dict['train']['pbar_len'])
# train -> eval
model.eval()
# fetch the first batch
val_prefetcher.reset()
val_data = val_prefetcher.next()
while val_data is not None:
# get data
gt_data = val_data['gt'].to(rank) # (B [RGB] H W)
lq_data = val_data['lq'].to(rank) # (B T [RGB] H W)
# pai_data = val_data['PAI'].to(rank) # (B T [RGB] H W)
pred_data = val_data['pred'].to(rank) # (B T [RGB] H W)
mv_data = val_data['mv'].to(rank) # (B T [RGB] H W)
res_data = val_data['residue'].to(rank) # (B T [RGB] H W)
index_vid = val_data['index_vid'].item()
name_vid = val_data['name_vid'][0] # bs must be 1!
b, _, c, h, w = lq_data.shape
input_data = torch.cat([lq_data[:,:,i,...] for i in range(c)], dim=1) # B [R1 ... R7 G1 ... G7 B1 ... B7] H W
input_pred = torch.cat([pred_data[:,:,i,...] for i in range(c)], dim=1) # B [R1 ... R7 G1 ... G7 B1 ... B7] H W
input_mv = torch.where(~torch.isnan(mv_data), mv_data, torch.tensor(0.0).cuda())
input_res = res_data # B [R1 ... R7 G1 ... G7 B1 ... B7] H W
enhanced_data = model(input_data, input_mv, input_pred, input_res) # input_pai
b, t, c, _, _ = lq_data.shape
# eval
batch_perf = np.mean([criterion(enhanced_data[i], gt_data[i]) for i in range(b)]) # bs must be 1!
# display
pbar.set_description("{:s}: [{:.3f}] {:s}".format(name_vid, batch_perf, unit))
pbar.update()
# log
per_aver_dict[index_vid].accum(volume=batch_perf)
# fetch next batch
val_data = val_prefetcher.next()
# end of val
pbar.close()
# eval -> train
model.train()
# log
ave_per = np.mean([ per_aver_dict[index_vid].get_ave() for index_vid in range(vid_num)])
msg = (
"> model saved at {:s}\n"
"> parameters {:.3f}\n"
"> ave val per: [{:.3f}] {:s}").format(checkpoint_save_path, sum([np.prod(p.size()) for p in model.parameters()]), ave_per, unit)
print(msg)
log_fp.write(msg + '\n')
log_fp.flush()
if opts_dict['train']['is_dist']:
torch.distributed.barrier() # all processes wait for ending
# fetch next batch
train_data = tra_prefetcher.next()
if rank == 0:
total_time = total_timer.get_interval() / 3600
msg = "TOTAL TIME: [{:.1f}] h".format(total_time)
print(msg)
log_fp.write(msg + '\n')
msg = (
f"\n{'<' * 10} Goodbye {'>' * 10}\n"
f"Timestamp: [{utils.get_timestr()}]"
)
print(msg)
log_fp.write(msg + '\n')
log_fp.close()
if __name__ == '__main__':
main()