From 7cb32379d77f3a685cc7887cea81c5ff91951d27 Mon Sep 17 00:00:00 2001 From: Istvan Kiss Date: Thu, 19 Dec 2024 17:35:26 +0100 Subject: [PATCH] Add asynchronous execution documentation page --- .wordlist.txt | 3 +- .../sequential_async_event.drawio | 298 +++++++++++ .../asynchronous/sequential_async_event.svg | 2 + docs/how-to/hip_runtime_api.rst | 1 + docs/how-to/hip_runtime_api/asynchronous.rst | 486 ++++++++++++++++++ docs/how-to/performance_guidelines.rst | 8 +- docs/sphinx/_toc.yml.in | 5 +- 7 files changed, 798 insertions(+), 5 deletions(-) create mode 100644 docs/data/how-to/hip_runtime_api/asynchronous/sequential_async_event.drawio create mode 100644 docs/data/how-to/hip_runtime_api/asynchronous/sequential_async_event.svg create mode 100644 docs/how-to/hip_runtime_api/asynchronous.rst diff --git a/.wordlist.txt b/.wordlist.txt index b3b8686678..a7955394f8 100644 --- a/.wordlist.txt +++ b/.wordlist.txt @@ -7,7 +7,7 @@ APUs AQL AXPY asm -Asynchrony +asynchrony backtrace Bitcode bitcode @@ -118,6 +118,7 @@ overindexing oversubscription overutilized parallelizable +parallelized pixelated pragmas preallocated diff --git a/docs/data/how-to/hip_runtime_api/asynchronous/sequential_async_event.drawio b/docs/data/how-to/hip_runtime_api/asynchronous/sequential_async_event.drawio new file mode 100644 index 0000000000..3d548182d7 --- /dev/null +++ b/docs/data/how-to/hip_runtime_api/asynchronous/sequential_async_event.drawio @@ -0,0 +1,298 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/docs/data/how-to/hip_runtime_api/asynchronous/sequential_async_event.svg b/docs/data/how-to/hip_runtime_api/asynchronous/sequential_async_event.svg new file mode 100644 index 0000000000..43d146db2d --- /dev/null +++ b/docs/data/how-to/hip_runtime_api/asynchronous/sequential_async_event.svg @@ -0,0 +1,2 @@ +
time
time
default stream
default stream
H2D
data1
H2D...
H2D
data2
H2D...
kernel
data1
kernel...
kernel
data2
kernel...
D2H
data1
D2H...
D2H
data2
D2H...
H2D
data2
H2D...
kernel
data2
kernel...
stream2
stream2
D2H
data2
D2H...
H2D
data1
H2D...
kernel
data1
kernel...
stream1
stream1
D2H
data1
D2H...
default stream
default stream
Seqeuntial calls:
Seqeuntial calls:
Asynchronous calls:
Asynchronous calls:
Asynchronous calls with hipEvent:
Asynchronous calls with hipEvent: +
H2D
data2
H2D...
kernel
data2
kernel...
stream2
stream2
H2D
data1
H2D...
kernel
data1
kernel...
stream1
stream1
D2H
data2
D2H...
default stream
default stream
event
event
D2H
data1
D2H...
create events
create events
Text is not SVG - cannot display
\ No newline at end of file diff --git a/docs/how-to/hip_runtime_api.rst b/docs/how-to/hip_runtime_api.rst index 65c89a60ed..f76851e078 100644 --- a/docs/how-to/hip_runtime_api.rst +++ b/docs/how-to/hip_runtime_api.rst @@ -40,6 +40,7 @@ Here are the various HIP Runtime API high level functions: * :doc:`./hip_runtime_api/initialization` * :doc:`./hip_runtime_api/memory_management` * :doc:`./hip_runtime_api/error_handling` +* :doc:`./hip_runtime_api/asynchronous` * :doc:`./hip_runtime_api/cooperative_groups` * :doc:`./hip_runtime_api/hipgraph` * :doc:`./hip_runtime_api/call_stack` diff --git a/docs/how-to/hip_runtime_api/asynchronous.rst b/docs/how-to/hip_runtime_api/asynchronous.rst new file mode 100644 index 0000000000..b68e743309 --- /dev/null +++ b/docs/how-to/hip_runtime_api/asynchronous.rst @@ -0,0 +1,486 @@ +.. meta:: + :description: This topic describes asynchronous concurrent execution in HIP + :keywords: AMD, ROCm, HIP, asynchronous concurrent execution, asynchronous, async, concurrent, concurrency + +.. _asynchronous_how-to: + +******************************************************************************* +Asynchronous concurrent execution +******************************************************************************* + +Asynchronous concurrent execution is important for efficient parallelism and +resource utilization, with techniques such as overlapping computation and data +transfer, managing concurrent kernel execution with streams on single or +multiple devices, or using HIP graphs. + +Streams and concurrent execution +=============================================================================== + +All asynchronous APIs, such as kernel execution, data movement and potentially +data allocation/freeing all happen in the context of device streams. + +Streams are FIFO buffers of commands to execute in order on a given device. +Commands which enqueue tasks on a stream all return promptly and the task is +executed asynchronously. Multiple streams can point to the same device and +those streams might be fed from multiple concurrent host-side threads. Execution +on multiple streams might be concurrent but isn't required to be. + +Managing streams +------------------------------------------------------------------------------- + +Streams enable the overlap of computation and data transfer, ensuring +continuous GPU activity. + +To create a stream, the following functions are used, each defining a handle +to the newly created stream: + +- :cpp:func:`hipStreamCreate`: Creates a stream with default settings. +- :cpp:func:`hipStreamCreateWithFlags`: Creates a stream, with specific + flags, listed below, enabling more control over stream behavior: + + - ``hipStreamDefault``: creates a default stream suitable for most + operations. The default stream is a blocking operation. + - ``hipStreamNonBlocking``: creates a non-blocking stream, allowing + concurrent execution of operations. It ensures that tasks can run + simultaneously without waiting for each other to complete, thus improving + overall performance. + +- :cpp:func:`hipStreamCreateWithPriority`: Allows creating a stream with a + specified priority, enabling prioritization of certain tasks. + +The :cpp:func:`hipStreamSynchronize` function is used to block the calling host +thread until all previously submitted tasks in a specified HIP stream have +completed. It ensures that all operations in the given stream, such as kernel +executions or memory transfers, are finished before the host thread proceeds. + +.. note:: + + If the :cpp:func:`hipStreamSynchronize` function input stream is 0 (or the + default stream), it waits for all operations in the default stream to + complete. + +Concurrent execution between host and device +------------------------------------------------------------------------------- + +Concurrent execution between the host (CPU) and device (GPU) allows the CPU to +perform other tasks while the GPU is executing kernels. Kernels can be launched +asynchronously using ``hipLaunchKernelDefault`` with a stream, enabling the CPU +to continue executing other code while the GPU processes the kernel. Similarly, +memory operations like :cpp:func:`hipMemcpyAsync` can be performed +asynchronously, allowing data transfers between the host and device without +blocking the CPU. + +Concurrent kernel execution +------------------------------------------------------------------------------- + +Concurrent execution of multiple kernels on the GPU allows different kernels to +run simultaneously to maximize GPU resource usage. Managing dependencies +between kernels is crucial for ensuring correct execution order. This can be +achieved using :cpp:func:`hipStreamWaitEvent`, which allows a kernel to wait +for a specific event before starting execution. + +Independent kernels can only run concurrently if there are enough registers +and shared memory for the kernels. To enable concurrent kernel executions, the +developer may have to reduce the block size of the kernels. The kernel runtimes +can be misleading for concurrent kernel runs, that is why during optimization +it is a good practice to check the trace files, to see if one kernel is blocking another +kernel, while they are running in parallel. + +When running kernels in parallel, the execution time can increase due to +contention for shared resources. This is because multiple kernels may attempt +to access the same GPU resources simultaneously, leading to delays. + +Asynchronous kernel execution is beneficial only under specific conditions. It +is most effective when the kernels do not fully utilize the GPU's resources. In +such cases, overlapping kernel execution can improve overall throughput and +efficiency by keeping the GPU busy without exceeding its capacity. + +Overlap of data transfer and kernel execution +=============================================================================== + +One of the primary benefits of asynchronous operations is the ability to +overlap data transfer with kernel execution, leading to better resource +utilization and improved performance. + +Asynchronous execution is particularly advantageous in iterative processes. For +instance, if an iteration calculation is initiated, it can be efficient to +prepare the input data simultaneously, provided that this preparation does not +depend on the kernel's execution. + +Querying device capabilities +------------------------------------------------------------------------------- + +Some AMD HIP-enabled devices can perform asynchronous memory copy operations to +or from the GPU concurrently with kernel execution. Applications can query this +capability by checking the ``asyncEngineCount`` device property. Devices with +an ``asyncEngineCount`` greater than zero support concurrent data transfers. +Additionally, if host memory is involved in the copy, it should be page-locked +to ensure optimal performance. + +Asynchronous memory operations +------------------------------------------------------------------------------- + +Asynchronous memory operations allow data to be transferred between the host +and device while kernels are being executed on the GPU. Using operations like +:cpp:func:`hipMemcpyAsync`, developers can initiate data transfers without +waiting for the previous operation to complete. This overlap of computation and +data transfer ensures that the GPU is not idle while waiting for data. Examples +include launching kernels in one stream while performing data transfers in +another. This technique is especially useful in applications with large data +sets that need to be processed quickly. + +Concurrent data transfers +------------------------------------------------------------------------------- + +Concurrent data transfers are supported between the host and device, within +device memory, and among multiple devices. Using :cpp:func:`hipMemcpyAsync`, +data can be transferred asynchronously, allowing for efficient data movement +without blocking other operations. :cpp:func:`hipMemcpyPeerAsync` enables data +transfers between different GPUs, facilitating multi-GPU communication. +Concurrent data transfers are important for applications that require frequent +and large data movements. By overlapping data transfers with computation, +developers can minimize idle times and enhance performance. This is +particularly important for applications that need to handle large volumes of +data efficiently. + +Concurrent data transfers with intra-device copies +------------------------------------------------------------------------------- + +Devices that support the ``concurrentKernels`` property can perform +intra-device copies concurrently with kernel execution. Additionally, devices +that support the ``asyncEngineCount`` property can perform data transfers to +or from the GPU simultaneously with kernel execution. Intra-device copies can +be initiated using standard memory copy functions with destination and source +addresses residing on the same device. + +Synchronization, event management and synchronous calls +=============================================================================== + +Synchronization and event management are important for coordinating tasks and +ensuring correct execution order, and synchronous calls are necessary for +maintaining data consistency. + +Synchronous calls +------------------------------------------------------------------------------- + +Synchronous calls ensure task completion before moving to the next operation. +For example, :cpp:func:`hipMemcpy` for data transfers waits for completion +before returning control to the host. Similarly, synchronous kernel launches +are used when immediate completion is required. When a synchronous function is +called, control is not returned to the host thread before the device has +completed the requested task. The behavior of the host thread—whether to yield, +block, or spin—can be specified using :cpp:func:`hipSetDeviceFlags` with +appropriate flags. Understanding when to use synchronous calls is important for +managing execution flow and avoiding data races. + +Events for synchronization +------------------------------------------------------------------------------- + +By creating an event with :cpp:func:`hipEventCreate` and recording it with +:cpp:func:`hipEventRecord`, developers can synchronize operations across +streams, ensuring correct task execution order. :cpp:func:`hipEventSynchronize` +lets the application wait for an event to complete before proceeding with the next +operation. + +Programmatic dependent launch and synchronization +------------------------------------------------------------------------------- + +While CUDA supports programmatic dependent launches allowing a secondary kernel +to start before the primary kernel finishes, HIP achieves similar functionality +using streams and events. By employing :cpp:func:`hipStreamWaitEvent`, it is +possible to manage the execution order without explicit hardware support. This +mechanism allows a secondary kernel to launch as soon as the necessary +conditions are met, even if the primary kernel is still running. + +Example +------------------------------------------------------------------------------- + +The examples shows the difference between sequential, asynchronous calls and +asynchronous calls with ``hipEvents``. + +.. figure:: ../../data/how-to/hip_runtime_api/asynchronous/sequential_async_event.svg + :alt: Compare the different calls + :align: center + +The example codes + +.. tab-set:: + + .. tab-item:: Sequential + + .. code-block:: cpp + + #include + #include + #include + + #define HIP_CHECK(expression) \ + { \ + const hipError_t status = expression; \ + if(status != hipSuccess){ \ + std::cerr << "HIP error " \ + << status << ": " \ + << hipGetErrorString(status) \ + << " at " << __FILE__ << ":" \ + << __LINE__ << std::endl; \ + } \ + } + + // GPU Kernels + __global__ void kernelA(double* arrayA, size_t size){ + const size_t x = threadIdx.x + blockDim.x * blockIdx.x; + if(x < size){arrayA[x] *= 2.0;} + }; + __global__ void kernelB(double* arrayB, size_t size){ + const size_t x = threadIdx.x + blockDim.x * blockIdx.x; + if(x < size){arrayB[x] += 3.0;} + }; + + int main() + { + constexpr int numOfBlocks = 256; + constexpr int threadsPerBlock = 4096; + constexpr int numberOfIterations = 50; + size_t arraySize = 1U << 20; + + double *d_dataA; + double *d_dataB; + + std::vector vectorA(arraySize, 4.0); + std::vector vectorB(arraySize, 2.0); + + // Allocate device memory + HIP_CHECK(hipMalloc(&d_dataA, arraySize * sizeof(*d_dataA))); + HIP_CHECK(hipMalloc(&d_dataB, arraySize * sizeof(*d_dataB))); + + for(unsigned int iteration = 0; iteration < numberOfIterations; iteration++) + { + // Host to Device copies + HIP_CHECK(hipMemcpy(d_dataA, vectorA.data(), arraySize * sizeof(*d_dataA), hipMemcpyHostToDevice)); + HIP_CHECK(hipMemcpy(d_dataB, vectorB.data(), arraySize * sizeof(*d_dataB), hipMemcpyHostToDevice)); + + // Launch the GPU kernels + hipLaunchKernelGGL(kernelA, dim3(numOfBlocks), dim3(threadsPerBlock), 0, 0, d_dataA, arraySize); + hipLaunchKernelGGL(kernelB, dim3(numOfBlocks), dim3(threadsPerBlock), 0, 0, d_dataB, arraySize); + + // Device to Host copies + HIP_CHECK(hipMemcpy(vectorA.data(), d_dataA, arraySize * sizeof(*vectorA.data()), hipMemcpyDeviceToHost)); + HIP_CHECK(hipMemcpy(vectorB.data(), d_dataB, arraySize * sizeof(*vectorB.data()), hipMemcpyDeviceToHost)); + } + + // Wait for all operations to complete + HIP_CHECK(hipDeviceSynchronize()); + + // Cleanup + HIP_CHECK(hipFree(d_dataA)); + HIP_CHECK(hipFree(d_dataB)); + + std::cout << "Sequential execution completed successfully." << std::endl; + + return 0; + } + + .. tab-item:: Asynchronous + + .. code-block:: cpp + + #include + #include + #include + + #define HIP_CHECK(expression) \ + { \ + const hipError_t status = expression; \ + if(status != hipSuccess){ \ + std::cerr << "HIP error " \ + << status << ": " \ + << hipGetErrorString(status) \ + << " at " << __FILE__ << ":" \ + << __LINE__ << std::endl; \ + } \ + } + + // GPU Kernels + __global__ void kernelA(double* arrayA, size_t size){ + const size_t x = threadIdx.x + blockDim.x * blockIdx.x; + if(x < size){arrayA[x] *= 2.0;} + }; + __global__ void kernelB(double* arrayB, size_t size){ + const size_t x = threadIdx.x + blockDim.x * blockIdx.x; + if(x < size){arrayB[x] += 3.0;} + }; + + int main() + { + constexpr int numOfBlocks = 256; + constexpr int threadsPerBlock = 4096; + constexpr int numberOfIterations = 50; + size_t arraySize = 1U << 20; + + double *d_dataA; + double *d_dataB; + + std::vector vectorA(arraySize, 4.0); + std::vector vectorB(arraySize, 2.0); + + // Allocate device memory + HIP_CHECK(hipMalloc(&d_dataA, arraySize * sizeof(*d_dataA))); + HIP_CHECK(hipMalloc(&d_dataB, arraySize * sizeof(*d_dataB))); + + // Create streams + hipStream_t streamA, streamB; + HIP_CHECK(hipStreamCreate(&streamA)); + HIP_CHECK(hipStreamCreate(&streamB)); + + for(unsigned int iteration = 0; iteration < numberOfIterations; iteration++) + { + // Stream 1: Host to Device 1 + HIP_CHECK(hipMemcpyAsync(d_dataA, vectorA.data(), arraySize * sizeof(*d_dataA), hipMemcpyHostToDevice, streamA)); + + // Stream 2: Host to Device 2 + HIP_CHECK(hipMemcpyAsync(d_dataB, vectorB.data(), arraySize * sizeof(*d_dataB), hipMemcpyHostToDevice, streamB)); + + // Stream 1: Kernel 1 + hipLaunchKernelGGL(kernelA, dim3(1024), dim3(1024), 0, streamA, d_dataA, arraySize); + + // Stream 2: Kernel 2 + hipLaunchKernelGGL(kernelB, dim3(1024), dim3(1024), 0, streamB, d_dataB, arraySize); + + // Stream 1: Device to Host 2 (after Kernel 1) + HIP_CHECK(hipMemcpyAsync(vectorA.data(), d_dataA, arraySize * sizeof(*vectorA.data()), hipMemcpyDeviceToHost, streamA)); + + // Stream 2: Device to Host 2 (after Kernel 2) + HIP_CHECK(hipMemcpyAsync(vectorB.data(), d_dataB, arraySize * sizeof(*vectorB.data()), hipMemcpyDeviceToHost, streamB)); + } + + // Wait for all operations in both streams to complete + HIP_CHECK(hipStreamSynchronize(streamA)); + HIP_CHECK(hipStreamSynchronize(streamB)); + + // Cleanup + HIP_CHECK(hipStreamDestroy(streamA)); + HIP_CHECK(hipStreamDestroy(streamB)); + HIP_CHECK(hipFree(d_dataA)); + HIP_CHECK(hipFree(d_dataB)); + + std::cout << "Asynchronous execution with events completed successfully." << std::endl; + + return 0; + } + + .. tab-item:: hipStreamWaitEvent + + .. code-block:: cpp + + #include + #include + #include + + #define HIP_CHECK(expression) \ + { \ + const hipError_t status = expression; \ + if(status != hipSuccess){ \ + std::cerr << "HIP error " \ + << status << ": " \ + << hipGetErrorString(status) \ + << " at " << __FILE__ << ":" \ + << __LINE__ << std::endl; \ + } \ + } + + // GPU Kernels + __global__ void kernelA(double* arrayA, size_t size){ + const size_t x = threadIdx.x + blockDim.x * blockIdx.x; + if(x < size){arrayA[x] *= 2.0;} + }; + __global__ void kernelB(double* arrayB, size_t size){ + const size_t x = threadIdx.x + blockDim.x * blockIdx.x; + if(x < size){arrayB[x] += 3.0;} + }; + + int main() + { + constexpr int numOfBlocks = 256; + constexpr int threadsPerBlock = 4096; + constexpr int numberOfIterations = 50; + size_t arraySize = 1U << 20; + + double *d_dataA; + double *d_dataB; + + std::vector vectorA(arraySize, 4.0); + std::vector vectorB(arraySize, 2.0); + + // Allocate device memory + HIP_CHECK(hipMalloc(&d_dataA, arraySize * sizeof(*d_dataA))); + HIP_CHECK(hipMalloc(&d_dataB, arraySize * sizeof(*d_dataB))); + + // Create streams + hipStream_t streamA, streamB; + HIP_CHECK(hipStreamCreate(&streamA)); + HIP_CHECK(hipStreamCreate(&streamB)); + + // Create events + hipEvent_t event, eventA, eventB; + HIP_CHECK(hipEventCreate(&event)); + HIP_CHECK(hipEventCreate(&eventA)); + HIP_CHECK(hipEventCreate(&eventB)); + + for(unsigned int iteration = 0; iteration < numberOfIterations; iteration++) + { + // Stream 1: Host to Device 1 + HIP_CHECK(hipMemcpyAsync(d_dataA, vectorA.data(), arraySize * sizeof(*d_dataA), hipMemcpyHostToDevice, streamA)); + + // Stream 2: Host to Device 2 + HIP_CHECK(hipMemcpyAsync(d_dataB, vectorB.data(), arraySize * sizeof(*d_dataB), hipMemcpyHostToDevice, streamB)); + + // Stream 1: Kernel 1 + hipLaunchKernelGGL(kernelA, dim3(1024), dim3(1024), 0, streamA, d_dataA, arraySize); + + // Record event after the GPU kernel in Stream 1 + HIP_CHECK(hipEventRecord(event, streamA)); + + // Stream 2: Wait for Event 1 before starting Kernel 2 + HIP_CHECK(hipStreamWaitEvent(streamB, event, 0)); + + // Stream 2: Kernel 2 + hipLaunchKernelGGL(kernelB, dim3(1024), dim3(1024), 0, streamB, d_dataB, arraySize); + + // Stream 1: Device to Host 2 (after Kernel 1) + HIP_CHECK(hipMemcpyAsync(vectorA.data(), d_dataA, arraySize * sizeof(*vectorA.data()), hipMemcpyDeviceToHost, streamA)); + + // Stream 2: Device to Host 2 (after Kernel 2) + HIP_CHECK(hipMemcpyAsync(vectorB.data(), d_dataB, arraySize * sizeof(*vectorB.data()), hipMemcpyDeviceToHost, streamB)); + } + + // Wait for all operations in both streams to complete + HIP_CHECK(hipEventRecord(eventA, streamA)); + HIP_CHECK(hipEventRecord(eventB, streamB)); + HIP_CHECK(hipStreamWaitEvent(streamA, eventA, 0)); + HIP_CHECK(hipStreamWaitEvent(streamB, eventB, 0)); + + // Cleanup + HIP_CHECK(hipEventDestroy(event)); + HIP_CHECK(hipEventDestroy(eventA)); + HIP_CHECK(hipEventDestroy(eventB)); + HIP_CHECK(hipStreamDestroy(streamA)); + HIP_CHECK(hipStreamDestroy(streamB)); + HIP_CHECK(hipFree(d_dataA)); + HIP_CHECK(hipFree(d_dataB)); + + std::cout << "Asynchronous execution with events completed successfully." << std::endl; + + return 0; + } + +HIP Graphs +=============================================================================== + +HIP graphs offer an efficient alternative to the standard method of launching +GPU tasks via streams. Comprising nodes for operations and edges for +dependencies, HIP graphs reduce kernel launch overhead and provide a high-level +abstraction for managing dependencies and synchronization. By representing +sequences of kernels and memory operations as a single graph, they simplify +complex workflows and enhance performance, particularly for applications with +intricate dependencies and multiple execution stages. +For more details, see the :ref:`how_to_HIP_graph` documentation. diff --git a/docs/how-to/performance_guidelines.rst b/docs/how-to/performance_guidelines.rst index d71c646657..33dbbb4af4 100644 --- a/docs/how-to/performance_guidelines.rst +++ b/docs/how-to/performance_guidelines.rst @@ -3,6 +3,8 @@ developers optimize the performance of HIP-capable GPU architectures. :keywords: AMD, ROCm, HIP, CUDA, performance, guidelines +.. _how_to_performance_guidelines: + ******************************************************************************* Performance guidelines ******************************************************************************* @@ -32,12 +34,14 @@ reveal and efficiently provide as much parallelism as possible. The parallelism can be performed at the application level, device level, and multiprocessor level. +.. _application_parallel_execution: + Application level -------------------------------------------------------------------------------- To enable parallel execution of the application across the host and devices, use -asynchronous calls and streams. Assign workloads based on efficiency: serial to -the host or parallel to the devices. +:ref:`asynchronous calls and streams `. Assign workloads +based on efficiency: serial to the host or parallel to the devices. For parallel workloads, when threads belonging to the same block need to synchronize to share data, use :cpp:func:`__syncthreads()` (see: diff --git a/docs/sphinx/_toc.yml.in b/docs/sphinx/_toc.yml.in index ba90d82efd..d160e48204 100644 --- a/docs/sphinx/_toc.yml.in +++ b/docs/sphinx/_toc.yml.in @@ -49,9 +49,10 @@ subtrees: - file: how-to/hip_runtime_api/memory_management/virtual_memory - file: how-to/hip_runtime_api/memory_management/stream_ordered_allocator - file: how-to/hip_runtime_api/error_handling - - file: how-to/hip_runtime_api/cooperative_groups - - file: how-to/hip_runtime_api/hipgraph - file: how-to/hip_runtime_api/call_stack + - file: how-to/hip_runtime_api/asynchronous + - file: how-to/hip_runtime_api/hipgraph + - file: how-to/hip_runtime_api/cooperative_groups - file: how-to/hip_runtime_api/multi_device - file: how-to/hip_runtime_api/opengl_interop - file: how-to/hip_runtime_api/external_interop