Skip to content

Latest commit

 

History

History
36 lines (28 loc) · 1.56 KB

README.md

File metadata and controls

36 lines (28 loc) · 1.56 KB

MobileNetv2 in PyTorch

An implementation of MobileNetv2 in PyTorch. MobileNetv2 is an efficient convolutional neural network architecture for mobile devices. For more information check the paper: Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation

Usage

Clone the repo:

git clone https://github.com/Randl/MobileNetV2-pytorch
pip install -r requirements.txt

Use the model defined in model.py to run ImageNet example:

python imagenet.py --dataroot "/path/to/imagenet/"

To run continue training from checkpoint

python imagenet.py --dataroot "/path/to/imagenet/" --resume "/path/to/checkpoint/folder"

Results

For x1.0 model I achieved 0.3% higher top-1 accuracy than claimed.

Classification Checkpoint MACs (M) Parameters (M) Top-1 Accuracy Top-5 Accuracy Claimed top-1 Claimed top-5
[mobilenet_v2_1.0_224] 300 3.47 72.10 90.48 71.8 91.0
[mobilenet_v2_0.5_160] 50 1.95 60.61 82.87 61.0 83.2

You can test it with

python imagenet.py --dataroot "/path/to/imagenet/" --resume "results/mobilenet_v2_1.0_224/model_best.pth.tar" -e
python imagenet.py --dataroot "/path/to/imagenet/" --resume "results/mobilenet_v2_0.5_160/model_best.pth.tar" -e --scaling 0.5 --input-size 160