-
Notifications
You must be signed in to change notification settings - Fork 1
/
cute_sound_pitch_plugin.h
855 lines (716 loc) · 28.5 KB
/
cute_sound_pitch_plugin.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
/*
------------------------------------------------------------------------------
Licensing information can be found at the end of the file.
------------------------------------------------------------------------------
cute_sound_pitch_plugin.h
To create implementation (the function definitions)
#define CUTE_SOUND_PITCH_PLUGIN_IMPLEMENTATION
in *one* C/CPP file (translation unit) that includes this file
SUMMARY
Implements a cute sound plugin for performing real-time pitch shifting
without time-stretching. It uses the fast fourier transform along with
some other tricks, but ultimately is quite an expensive operation. Use
with care.
Please note this plugin is for *real-time* pitch shifting, meaning the
quality of the pitch shifting will not sound nearly as good as an off-
line preprocessor like Audacity's pitch shifter. If you want really high
quality pitch shifting, it's best to preprocess your audio offline and
simply save different samples at different pitches to disk, and then play
them at run-time. This pitch shifter is just for small variations or
other use-cases requiring a cheap-and-quick pitch adjustment.
EXAMPLE
https://github.com/RandyGaul/cute_headers/tree/master/examples_cute_sound/pitch
*/
#ifndef CUTE_SOUND_H
# error Please include cute_sound.h before including cute_sound_pitch_plugin.h.
#endif
#ifndef CUTE_SOUND_PITCH_PLUGIN_H
#define CUTE_SOUND_PITCH_PLUGIN_H
cs_plugin_interface_t csp_get_pitch_plugin();
// Change pitch (not duration) of sound. pitch = 0.5f for one octave lower, pitch = 2.0f for one octave higher.
// pitch at 1.0f applies no change. pitch settings farther away from 1.0f create more distortion and lower
// the output sample quality. pitch can be adjusted in real-time for doppler effects and the like. Going beyond
// 0.5f and 2.0f may require some tweaking the pitch shifting parameters, and is not recommended.
void csp_set_pitch(cs_playing_sound_t* sound, float pitch, cs_plugin_id_t id);
typedef struct csp_filter_t csp_filter_t;
#endif CUTE_SOUND_PITCH_PLUGIN_H
#ifdef CUTE_SOUND_PITCH_PLUGIN_IMPLEMENTATION
#ifndef CUTE_SOUND_PITCH_PLUGIN_IMPLEMENTATION_ONCE
#define CUTE_SOUND_PITCH_PLUGIN_IMPLEMENTATION_ONCE
#ifndef CUTE_SOUND_IMPLEMENTATION
# error Please make sure to place the implementation of cute sound pitch plugin just after the cute sound implementation.
// Here is an example.
//
// #define CUTE_SOUND_IMPLEMENTATION
// #include <cute_sound.h>
//
// #define CUTE_SOUND_PITCH_PLUGIN_IMPLEMENTATION
// #include <cute_sound_pitch_plugin.h>
#endif
// TODO:
// Make these run-time configurable. Specifically frame size, max lenght, and quality.
#define CUTE_SOUND_MAX_FRAME_LENGTH 4096
#define CUTE_SOUND_PITCH_FRAME_SIZE 512
#define CUTE_SOUND_PITCH_QUALITY 4
#define CUTE_SOUND_STEPSIZE (CUTE_SOUND_PITCH_FRAME_SIZE / CUTE_SOUND_PITCH_QUALITY)
#define CUTE_SOUND_OVERLAP (CUTE_SOUND_PITCH_FRAME_SIZE - CUTE_SOUND_STEPSIZE)
#define CUTE_SOUND_EXPECTED_FREQUENCY (2.0f * 3.14159265359f * (float)CUTE_SOUND_STEPSIZE / (float)CUTE_SOUND_PITCH_FRAME_SIZE)
// TODO:
// Use a memory pool for these things. For now they are just cs_malloc16'd/cs_free16'd
// Not high priority to use a pool, since pitch shifting is already really expensive,
// and cost of malloc is dwarfed. But would be a nice-to-have for potential memory
// fragmentation issues.
typedef struct csp_filter_t
{
float pitch_shifted_output_samples[CUTE_SOUND_MAX_FRAME_LENGTH];
float in_FIFO[CUTE_SOUND_STEPSIZE + CUTE_SOUND_PITCH_FRAME_SIZE];
float out_FIFO[CUTE_SOUND_STEPSIZE + CUTE_SOUND_PITCH_FRAME_SIZE];
float fft_data[2 * CUTE_SOUND_PITCH_FRAME_SIZE];
float previous_phase[CUTE_SOUND_PITCH_FRAME_SIZE / 2 + 4];
float sum_phase[CUTE_SOUND_PITCH_FRAME_SIZE / 2 + 4];
float window_accumulator[CUTE_SOUND_STEPSIZE + CUTE_SOUND_PITCH_FRAME_SIZE];
float freq[CUTE_SOUND_PITCH_FRAME_SIZE];
float mag[CUTE_SOUND_PITCH_FRAME_SIZE];
float pitch_shift_workspace[CUTE_SOUND_PITCH_FRAME_SIZE];
int index;
float pitch;
} csp_filter_t;
typedef struct csp_data_t
{
int channel_count;
csp_filter_t* filters[2];
} csp_data_t;
// TODO:
// Try this optimization out (2N POINT REAL FFT USING AN N POINT COMPLEX FFT)
// http://www.fftguru.com/fftguru.com.tutorial2.pdf
#include <math.h>
static uint32_t s_rev32(uint32_t x)
{
uint32_t a = ((x & 0xAAAAAAAA) >> 1) | ((x & 0x55555555) << 1);
uint32_t b = ((a & 0xCCCCCCCC) >> 2) | ((a & 0x33333333) << 2);
uint32_t c = ((b & 0xF0F0F0F0) >> 4) | ((b & 0x0F0F0F0F) << 4);
uint32_t d = ((c & 0xFF00FF00) >> 8) | ((c & 0x00FF00FF) << 8);
return (d >> 16) | (d << 16);
}
static uint32_t s_popcount(uint32_t x)
{
uint32_t a = x - ((x >> 1) & 0x55555555);
uint32_t b = (((a >> 2) & 0x33333333) + (a & 0x33333333));
uint32_t c = (((b >> 4) + b) & 0x0F0F0F0F);
uint32_t d = c + (c >> 8);
uint32_t e = d + (d >> 16);
uint32_t f = e & 0x0000003F;
return f;
}
static uint32_t s_log2(uint32_t x)
{
uint32_t a = x | (x >> 1);
uint32_t b = a | (a >> 2);
uint32_t c = b | (b >> 4);
uint32_t d = c | (c >> 8);
uint32_t e = d | (d >> 16);
uint32_t f = e >> 1;
return s_popcount(f);
}
// x contains real inputs
// y contains imaginary inputs
// count must be a power of 2
// sign must be 1.0 (forward transform) or -1.0f (inverse transform)
static void s_fft(float* x, float* y, int count, float sign)
{
int exponent = (int)s_log2((uint32_t)count);
// bit reversal stage
// swap all elements with their bit reversed index within the
// lowest level of the Cooley-Tukey recursion tree
for (int i = 1; i < count - 1; i++)
{
uint32_t j = s_rev32((uint32_t)i);
j >>= (32 - exponent);
if (i < (int)j)
{
float tx = x[i];
float ty = y[i];
x[i] = x[j];
y[i] = y[j];
x[j] = tx;
y[j] = ty;
}
}
// for each recursive iteration
for (int iter = 0, L = 1; iter < exponent; ++iter)
{
int Ls = L;
L <<= 1;
float ur = 1.0f; // cos(pi / 2)
float ui = 0; // sin(pi / 2)
float arg = 3.14159265359f / (float)Ls;
float wr = cosf(arg);
float wi = -sign * sinf(arg);
// rows in DFT submatrix
for (int j = 0; j < Ls; ++j)
{
// do butterflies upon DFT row elements
for (int i = j; i < count; i += L)
{
int index = i + Ls;
float x_index = x[index];
float y_index = y[index];
float x_i = x[i];
float y_i = y[i];
float tr = ur * x_index - ui * y_index;
float ti = ur * y_index + ui * x_index;
float x_low = x_i - tr;
float x_high = x_i + tr;
float y_low = y_i - ti;
float y_high = y_i + ti;
x[index] = x_low;
y[index] = y_low;
x[i] = x_high;
y[i] = y_high;
}
// Rotate u1 and u2 via Givens rotations (2d planar rotation).
// This keeps cos/sin calls in the outermost loop.
// Floating point error is scaled proportionally to Ls.
float t = ur * wr - ui * wi;
ui = ur * wi + ui * wr;
ur = t;
}
}
// scale factor for forward transform
if (sign > 0)
{
float inv_count = 1.0f / (float)count;
for (int i = 0; i < count; i++)
{
x[i] *= inv_count;
y[i] *= inv_count;
}
}
}
#ifdef _MSC_VER
#define CUTE_SOUND_ALIGN16_0 __declspec(align(16))
#define CUTE_SOUND_ALIGN16_1
#else
#define CUTE_SOUND_ALIGN16_0
#define CUTE_SOUND_ALIGN16_1 __attribute__((aligned(16)))
#endif
// SSE2 trig funcs from https://github.com/to-miz/sse_mathfun_extension/
#define _PS_CONST(Name, Val) \
CUTE_SOUND_ALIGN16_0 float _ps_##Name[4] CUTE_SOUND_ALIGN16_1 = { Val, Val, Val, Val }
#define _PS_CONST_TYPE(Name, Type, Val) \
CUTE_SOUND_ALIGN16_0 Type _ps_##Name[4] CUTE_SOUND_ALIGN16_1 = { Val, Val, Val, Val }
#define _PI32_CONST(Name, Val) \
CUTE_SOUND_ALIGN16_0 int _pi32_##Name[4] CUTE_SOUND_ALIGN16_1 = { Val, Val, Val, Val }
_PS_CONST_TYPE(sign_mask, int, (int)0x80000000);
_PS_CONST_TYPE(inv_sign_mask, int, (int)~0x80000000);
_PS_CONST(atanrange_hi, 2.414213562373095f);
_PS_CONST(atanrange_lo, 0.4142135623730950f);
_PS_CONST(cephes_PIO2F, 1.5707963267948966192f);
_PS_CONST(cephes_PIO4F, 0.7853981633974483096f);
_PS_CONST(1, 1.0f);
_PS_CONST(0p5, 0.5f);
_PS_CONST(0, 0);
_PS_CONST(sincof_p0, -1.9515295891E-4f);
_PS_CONST(sincof_p1, 8.3321608736E-3f);
_PS_CONST(sincof_p2, -1.6666654611E-1f);
_PS_CONST(atancof_p0, 8.05374449538e-2f);
_PS_CONST(atancof_p1, 1.38776856032E-1f);
_PS_CONST(atancof_p2, 1.99777106478E-1f);
_PS_CONST(atancof_p3, 3.33329491539E-1f);
_PS_CONST(cephes_PIF, 3.141592653589793238f);
_PS_CONST(cephes_2PIF, 2.0f * 3.141592653589793238f);
_PS_CONST(cephes_FOPI, 1.27323954473516f); // 4 / M_PI
_PS_CONST(minus_cephes_DP1, -0.78515625f);
_PS_CONST(minus_cephes_DP2, -2.4187564849853515625e-4f);
_PS_CONST(minus_cephes_DP3, -3.77489497744594108e-8f);
_PS_CONST(coscof_p0, 2.443315711809948E-005f);
_PS_CONST(coscof_p1, -1.388731625493765E-003f);
_PS_CONST(coscof_p2, 4.166664568298827E-002f);
_PS_CONST(frame_size, (float)CUTE_SOUND_PITCH_FRAME_SIZE);
_PI32_CONST(1, 1);
_PI32_CONST(inv1, ~1);
_PI32_CONST(2, 2);
_PI32_CONST(4, 4);
#if 0 /* temporary comment it out, remove "unused functions" warning */
static __m128 _mm_atan_ps(__m128 x)
{
__m128 sign_bit, y;
sign_bit = x;
/* take the absolute value */
x = _mm_and_ps(x, *(__m128*)_ps_inv_sign_mask);
/* extract the sign bit (upper one) */
sign_bit = _mm_and_ps(sign_bit, *(__m128*)_ps_sign_mask);
/* range reduction, init x and y depending on range */
/* x > 2.414213562373095 */
__m128 cmp0 = _mm_cmpgt_ps(x, *(__m128*)_ps_atanrange_hi);
/* x > 0.4142135623730950 */
__m128 cmp1 = _mm_cmpgt_ps(x, *(__m128*)_ps_atanrange_lo);
/* x > 0.4142135623730950 && !(x > 2.414213562373095) */
__m128 cmp2 = _mm_andnot_ps(cmp0, cmp1);
/* -(1.0/x) */
__m128 y0 = _mm_and_ps(cmp0, *(__m128*)_ps_cephes_PIO2F);
__m128 x0 = _mm_div_ps(*(__m128*)_ps_1, x);
x0 = _mm_xor_ps(x0, *(__m128*)_ps_sign_mask);
__m128 y1 = _mm_and_ps(cmp2, *(__m128*)_ps_cephes_PIO4F);
/* (x-1.0)/(x+1.0) */
__m128 x1_o = _mm_sub_ps(x, *(__m128*)_ps_1);
__m128 x1_u = _mm_add_ps(x, *(__m128*)_ps_1);
__m128 x1 = _mm_div_ps(x1_o, x1_u);
__m128 x2 = _mm_and_ps(cmp2, x1);
x0 = _mm_and_ps(cmp0, x0);
x2 = _mm_or_ps(x2, x0);
cmp1 = _mm_or_ps(cmp0, cmp2);
x2 = _mm_and_ps(cmp1, x2);
x = _mm_andnot_ps(cmp1, x);
x = _mm_or_ps(x2, x);
y = _mm_or_ps(y0, y1);
__m128 zz = _mm_mul_ps(x, x);
__m128 acc = *(__m128*)_ps_atancof_p0;
acc = _mm_mul_ps(acc, zz);
acc = _mm_sub_ps(acc, *(__m128*)_ps_atancof_p1);
acc = _mm_mul_ps(acc, zz);
acc = _mm_add_ps(acc, *(__m128*)_ps_atancof_p2);
acc = _mm_mul_ps(acc, zz);
acc = _mm_sub_ps(acc, *(__m128*)_ps_atancof_p3);
acc = _mm_mul_ps(acc, zz);
acc = _mm_mul_ps(acc, x);
acc = _mm_add_ps(acc, x);
y = _mm_add_ps(y, acc);
/* update the sign */
y = _mm_xor_ps(y, sign_bit);
return y;
}
static __m128 _mm_atan2_ps(__m128 y, __m128 x)
{
__m128 x_eq_0 = _mm_cmpeq_ps(x, *(__m128*)_ps_0);
__m128 x_gt_0 = _mm_cmpgt_ps(x, *(__m128*)_ps_0);
__m128 x_le_0 = _mm_cmple_ps(x, *(__m128*)_ps_0);
__m128 y_eq_0 = _mm_cmpeq_ps(y, *(__m128*)_ps_0);
__m128 x_lt_0 = _mm_cmplt_ps(x, *(__m128*)_ps_0);
__m128 y_lt_0 = _mm_cmplt_ps(y, *(__m128*)_ps_0);
__m128 zero_mask = _mm_and_ps(x_eq_0, y_eq_0);
__m128 zero_mask_other_case = _mm_and_ps(y_eq_0, x_gt_0);
zero_mask = _mm_or_ps(zero_mask, zero_mask_other_case);
__m128 pio2_mask = _mm_andnot_ps(y_eq_0, x_eq_0);
__m128 pio2_mask_sign = _mm_and_ps(y_lt_0, *(__m128*)_ps_sign_mask);
__m128 pio2_result = *(__m128*)_ps_cephes_PIO2F;
pio2_result = _mm_xor_ps(pio2_result, pio2_mask_sign);
pio2_result = _mm_and_ps(pio2_mask, pio2_result);
__m128 pi_mask = _mm_and_ps(y_eq_0, x_le_0);
__m128 pi = *(__m128*)_ps_cephes_PIF;
__m128 pi_result = _mm_and_ps(pi_mask, pi);
__m128 swap_sign_mask_offset = _mm_and_ps(x_lt_0, y_lt_0);
swap_sign_mask_offset = _mm_and_ps(swap_sign_mask_offset, *(__m128*)_ps_sign_mask);
__m128 offset0 = _mm_setzero_ps();
__m128 offset1 = *(__m128*)_ps_cephes_PIF;
offset1 = _mm_xor_ps(offset1, swap_sign_mask_offset);
__m128 offset = _mm_andnot_ps(x_lt_0, offset0);
offset = _mm_and_ps(x_lt_0, offset1);
__m128 arg = _mm_div_ps(y, x);
__m128 atan_result = _mm_atan_ps(arg);
atan_result = _mm_add_ps(atan_result, offset);
/* select between zero_result, pio2_result and atan_result */
__m128 result = _mm_andnot_ps(zero_mask, pio2_result);
atan_result = _mm_andnot_ps(pio2_mask, atan_result);
atan_result = _mm_andnot_ps(pio2_mask, atan_result);
result = _mm_or_ps(result, atan_result);
result = _mm_or_ps(result, pi_result);
return result;
}
#endif
static void _mm_sincos_ps(__m128 x, __m128 *s, __m128 *c)
{
__m128 xmm1, xmm2, xmm3 = _mm_setzero_ps(), sign_bit_sin, y;
__m128i emm0, emm2, emm4;
sign_bit_sin = x;
/* take the absolute value */
x = _mm_and_ps(x, *(__m128*)_ps_inv_sign_mask);
/* extract the sign bit (upper one) */
sign_bit_sin = _mm_and_ps(sign_bit_sin, *(__m128*)_ps_sign_mask);
/* scale by 4/Pi */
y = _mm_mul_ps(x, *(__m128*)_ps_cephes_FOPI);
/* store the integer part of y in emm2 */
emm2 = _mm_cvttps_epi32(y);
/* j=(j+1) & (~1) (see the cephes sources) */
emm2 = _mm_add_epi32(emm2, *(__m128i*)_pi32_1);
emm2 = _mm_and_si128(emm2, *(__m128i*)_pi32_inv1);
y = _mm_cvtepi32_ps(emm2);
emm4 = emm2;
/* get the swap sign flag for the sine */
emm0 = _mm_and_si128(emm2, *(__m128i*)_pi32_4);
emm0 = _mm_slli_epi32(emm0, 29);
__m128 swap_sign_bit_sin = _mm_castsi128_ps(emm0);
/* get the polynom selection mask for the sine*/
emm2 = _mm_and_si128(emm2, *(__m128i*)_pi32_2);
emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
__m128 poly_mask = _mm_castsi128_ps(emm2);
/* The magic pass: "Extended precision modular arithmetic"
x = ((x - y * DP1) - y * DP2) - y * DP3; */
xmm1 = *(__m128*)_ps_minus_cephes_DP1;
xmm2 = *(__m128*)_ps_minus_cephes_DP2;
xmm3 = *(__m128*)_ps_minus_cephes_DP3;
xmm1 = _mm_mul_ps(y, xmm1);
xmm2 = _mm_mul_ps(y, xmm2);
xmm3 = _mm_mul_ps(y, xmm3);
x = _mm_add_ps(x, xmm1);
x = _mm_add_ps(x, xmm2);
x = _mm_add_ps(x, xmm3);
emm4 = _mm_sub_epi32(emm4, *(__m128i*)_pi32_2);
emm4 = _mm_andnot_si128(emm4, *(__m128i*)_pi32_4);
emm4 = _mm_slli_epi32(emm4, 29);
__m128 sign_bit_cos = _mm_castsi128_ps(emm4);
sign_bit_sin = _mm_xor_ps(sign_bit_sin, swap_sign_bit_sin);
/* Evaluate the first polynom (0 <= x <= Pi/4) */
__m128 z = _mm_mul_ps(x, x);
y = *(__m128*)_ps_coscof_p0;
y = _mm_mul_ps(y, z);
y = _mm_add_ps(y, *(__m128*)_ps_coscof_p1);
y = _mm_mul_ps(y, z);
y = _mm_add_ps(y, *(__m128*)_ps_coscof_p2);
y = _mm_mul_ps(y, z);
y = _mm_mul_ps(y, z);
__m128 tmp = _mm_mul_ps(z, *(__m128*)_ps_0p5);
y = _mm_sub_ps(y, tmp);
y = _mm_add_ps(y, *(__m128*)_ps_1);
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
__m128 y2 = *(__m128*)_ps_sincof_p0;
y2 = _mm_mul_ps(y2, z);
y2 = _mm_add_ps(y2, *(__m128*)_ps_sincof_p1);
y2 = _mm_mul_ps(y2, z);
y2 = _mm_add_ps(y2, *(__m128*)_ps_sincof_p2);
y2 = _mm_mul_ps(y2, z);
y2 = _mm_mul_ps(y2, x);
y2 = _mm_add_ps(y2, x);
/* select the correct result from the two polynoms */
xmm3 = poly_mask;
__m128 ysin2 = _mm_and_ps(xmm3, y2);
__m128 ysin1 = _mm_andnot_ps(xmm3, y);
y2 = _mm_sub_ps(y2, ysin2);
y = _mm_sub_ps(y, ysin1);
xmm1 = _mm_add_ps(ysin1, ysin2);
xmm2 = _mm_add_ps(y, y2);
/* update the sign */
*s = _mm_xor_ps(xmm1, sign_bit_sin);
*c = _mm_xor_ps(xmm2, sign_bit_cos);
}
static __m128i s_select_si(__m128i a, __m128i b, __m128i mask)
{
return _mm_xor_si128(a, _mm_and_si128(mask, _mm_xor_si128(b, a)));
}
static __m128 s_vonhann4(int i)
{
__m128 k4 = _mm_set_ps((float)(i * 4 + 3), (float)(i * 4 + 2), (float)(i * 4 + 1), (float)(i * 4));
k4 = _mm_mul_ps(*(__m128*)_ps_cephes_2PIF, k4);
k4 = _mm_div_ps(k4, *(__m128*)_ps_frame_size);
// Seems like _mm_cos_ps and _mm_sincos_ps was causing some audio popping...
// I'm not really skilled enough to fix it, but feel free to try: http://gruntthepeon.free.fr/ssemath/sse_mathfun.h
// My guess is some large negative or positive values were causing some
// precision trouble. In this case manually calling 4 cosines is not
// really a big deal, since this function is not a bottleneck.
#if 0
__m128 c = _mm_cos_ps(k4);
#elif 0
__m128 s, c;
_mm_sincos_ps(k4, &s, &c);
#else
__m128 c = k4;
float* cf = (float*)&c;
cf[0] = cosf(cf[0]);
cf[1] = cosf(cf[1]);
cf[2] = cosf(cf[2]);
cf[3] = cosf(cf[3]);
#endif
__m128 von_hann = _mm_add_ps(_mm_mul_ps(_mm_set_ps1(-0.5f), c), _mm_set_ps1(0.5f));
return von_hann;
}
static float s_atan2f(float x, float y)
{
float signx = x > 0 ? 1.0f : -1.0f;
if (x == 0) return 0;
if (y == 0) return signx * 3.14159265f / 2.0f;
return atan2f(x, y);
}
// Analysis and synthesis steps learned from Bernsee's wonderful blog post:
// http://blogs.zynaptiq.com/bernsee/pitch-shifting-using-the-ft/
static int s_pitch_shift(int num_samples_to_process, float sample_rate, const float* indata, csp_filter_t* pitch_filter)
{
// This can happen if pitch shifting becomes slower than real-time.
// If this does happen it will sound ugly. The only thing to do is
// to either optimize the pitch shifter, tweak the tuning parameters,
// or simply pitch shift less audio all at once.
if (num_samples_to_process > CUTE_SOUND_MAX_FRAME_LENGTH) {
return 0;
}
// make sure compiler didn't do anything weird with the member
// offsets of csp_filter_t. All arrays must be 16 byte aligned
CUTE_SOUND_ASSERT(!((size_t)&(((csp_filter_t*)0)->pitch_shifted_output_samples) & 15));
CUTE_SOUND_ASSERT(!((size_t)&(((csp_filter_t*)0)->fft_data) & 15));
CUTE_SOUND_ASSERT(!((size_t)&(((csp_filter_t*)0)->in_FIFO) & 15));
CUTE_SOUND_ASSERT(!((size_t)&(((csp_filter_t*)0)->out_FIFO) & 15));
CUTE_SOUND_ASSERT(!((size_t)&(((csp_filter_t*)0)->fft_data) & 15));
CUTE_SOUND_ASSERT(!((size_t)&(((csp_filter_t*)0)->previous_phase) & 15));
CUTE_SOUND_ASSERT(!((size_t)&(((csp_filter_t*)0)->sum_phase) & 15));
CUTE_SOUND_ASSERT(!((size_t)&(((csp_filter_t*)0)->window_accumulator) & 15));
CUTE_SOUND_ASSERT(!((size_t)&(((csp_filter_t*)0)->freq) & 15));
CUTE_SOUND_ASSERT(!((size_t)&(((csp_filter_t*)0)->mag) & 15));
CUTE_SOUND_ASSERT(!((size_t)&(((csp_filter_t*)0)->pitch_shift_workspace) & 15));
csp_filter_t* pf = pitch_filter;
float pitch = pf->pitch;
float freqPerBin = sample_rate / (float)CUTE_SOUND_PITCH_FRAME_SIZE;
__m128 freq_per_bin = _mm_set_ps1(sample_rate / (float)CUTE_SOUND_PITCH_FRAME_SIZE);
__m128 pi = *(__m128*)_ps_cephes_PIF;
__m128 two_pi = *(__m128*)_ps_cephes_2PIF;
__m128 pitch_quality = _mm_set_ps1((float)CUTE_SOUND_PITCH_QUALITY);
float* out_samples = pf->pitch_shifted_output_samples;
if (pf->index == 0) pf->index = CUTE_SOUND_OVERLAP;
while (num_samples_to_process)
{
int copy_count = CUTE_SOUND_PITCH_FRAME_SIZE - pf->index;
if (num_samples_to_process < copy_count) copy_count = num_samples_to_process;
memcpy(pf->in_FIFO + pf->index, indata, sizeof(float) * copy_count);
memcpy(out_samples, pf->out_FIFO + pf->index - CUTE_SOUND_OVERLAP, sizeof(float) * copy_count);
int start_index = pf->index;
int offset = start_index & 3;
start_index += 4 - offset;
for (int i = 0; i < offset; ++i)
pf->in_FIFO[pf->index + i] /= 32768.0f;
int extra = copy_count & 3;
copy_count = copy_count / 4 - extra;
__m128* in_FIFO = (__m128*)(pf->in_FIFO + pf->index + offset);
CUTE_SOUND_ASSERT(!((size_t)in_FIFO & 15));
__m128 int16_max = _mm_set_ps1(32768.0f);
for (int i = 0; i < copy_count; ++i)
{
__m128 val = in_FIFO[i];
__m128 div = _mm_div_ps(val, int16_max);
in_FIFO[i] = div;
}
for (int i = 0, copy_count4 = copy_count * 4; i < extra; ++i)
{
int index = copy_count4 + i;
pf->in_FIFO[pf->index + index] /= 32768.0f;
}
CUTE_SOUND_ASSERT(!((size_t)out_samples & 15));
__m128* out_samples4 = (__m128*)out_samples;
for (int i = 0; i < copy_count; ++i)
{
__m128 val = out_samples4[i];
__m128 mul = _mm_mul_ps(val, int16_max);
out_samples4[i] = mul;
}
for (int i = 0, copy_count4 = copy_count * 4; i < extra; ++i)
{
int index = copy_count4 + i;
out_samples[index] *= 32768.0f;
}
copy_count = copy_count * 4 + extra;
num_samples_to_process -= copy_count;
pf->index += copy_count;
indata += copy_count;
out_samples += copy_count;
if (pf->index >= CUTE_SOUND_PITCH_FRAME_SIZE)
{
pf->index = CUTE_SOUND_OVERLAP;
{
__m128* fft_data = (__m128*)pf->fft_data;
__m128* in_FIFO = (__m128*)pf->in_FIFO;
for (int k = 0; k < CUTE_SOUND_PITCH_FRAME_SIZE / 4; k++)
{
__m128 von_hann = s_vonhann4(k);
__m128 sample = in_FIFO[k];
__m128 windowed_sample = _mm_mul_ps(sample, von_hann);
fft_data[k] = windowed_sample;
}
}
memset(pf->fft_data + CUTE_SOUND_PITCH_FRAME_SIZE, 0, CUTE_SOUND_PITCH_FRAME_SIZE * sizeof(float));
s_fft(pf->fft_data, pf->fft_data + CUTE_SOUND_PITCH_FRAME_SIZE, CUTE_SOUND_PITCH_FRAME_SIZE, 1.0f);
{
__m128* fft_data = (__m128*)pf->fft_data;
__m128* previous_phase = (__m128*)pf->previous_phase;
__m128* magnitudes = (__m128*)pf->mag;
__m128* frequencies = (__m128*)pf->freq;
int simd_count = (CUTE_SOUND_PITCH_FRAME_SIZE / 2) / 4;
for (int k = 0; k <= simd_count; k++)
{
__m128 real = fft_data[k];
__m128 imag = fft_data[(CUTE_SOUND_PITCH_FRAME_SIZE / 4) + k];
__m128 overlap_phase = _mm_set_ps((float)(k * 4 + 3) * CUTE_SOUND_EXPECTED_FREQUENCY, (float)(k * 4 + 2) * CUTE_SOUND_EXPECTED_FREQUENCY, (float)(k * 4 + 1) * CUTE_SOUND_EXPECTED_FREQUENCY, (float)(k * 4) * CUTE_SOUND_EXPECTED_FREQUENCY);
__m128 k4 = _mm_set_ps((float)(k * 4 + 3), (float)(k * 4 + 2), (float)(k * 4 + 1), (float)(k * 4));
__m128 mag = _mm_mul_ps(_mm_set_ps1(2.0f), _mm_sqrt_ps(_mm_add_ps(_mm_mul_ps(real, real), _mm_mul_ps(imag, imag))));
#if 0
__m128 phase = _mm_atan2_ps(imag, real);
#else
__m128 phase; // = _mm_atan2_ps(imag, real);
float *phasef = (float*)&phase;
float *realf = (float*)ℜ
float *imagf = (float*)&imag;
for (int i = 0; i < 4; i++) phasef[i] = s_atan2f(imagf[i], realf[i]);
#endif
__m128 phase_dif = _mm_sub_ps(phase, previous_phase[k]);
previous_phase[k] = phase;
phase_dif = _mm_sub_ps(phase_dif, overlap_phase);
// map delta phase into +/- pi interval
__m128i qpd = _mm_cvttps_epi32(_mm_div_ps(phase_dif, pi));
__m128i zero = _mm_setzero_si128();
__m128i ltzero_mask = _mm_cmplt_epi32(qpd, zero);
__m128i ones_bit = _mm_and_si128(qpd, _mm_set1_epi32(1));
__m128i neg_qpd = _mm_sub_epi32(qpd, ones_bit);
__m128i pos_qpd = _mm_add_epi32(qpd, ones_bit);
qpd = s_select_si(pos_qpd, neg_qpd, ltzero_mask);
__m128 pi_range_offset = _mm_mul_ps(pi, _mm_cvtepi32_ps(qpd));
phase_dif = _mm_sub_ps(phase_dif, pi_range_offset);
__m128 deviation = _mm_div_ps(_mm_mul_ps(_mm_set_ps1((float)CUTE_SOUND_PITCH_QUALITY), phase_dif), two_pi);
__m128 true_freq_estimated = _mm_add_ps(_mm_mul_ps(k4, freq_per_bin), _mm_mul_ps(deviation, freq_per_bin));
magnitudes[k] = mag;
frequencies[k] = true_freq_estimated;
}
}
// actual pitch shifting work
// shift frequencies into workspace
memset(pf->pitch_shift_workspace, 0, (CUTE_SOUND_PITCH_FRAME_SIZE / 2) * sizeof(float));
for (int k = 0; k <= CUTE_SOUND_PITCH_FRAME_SIZE / 2; k++)
{
int index = (int)(k * pitch);
if (index <= CUTE_SOUND_PITCH_FRAME_SIZE / 2)
pf->pitch_shift_workspace[index] = pf->freq[k] * pitch;
}
// swap buffers around to reuse old pf->preq buffer as the new workspace
float* frequencies = pf->pitch_shift_workspace;
float* pitch_shift_workspace = pf->freq;
float* magnitudes = pf->mag;
// shift magnitudes into workspace
memset(pitch_shift_workspace, 0, CUTE_SOUND_PITCH_FRAME_SIZE * sizeof(float));
for (int k = 0; k <= CUTE_SOUND_PITCH_FRAME_SIZE / 2; k++)
{
int index = (int)(k * pitch);
if (index <= CUTE_SOUND_PITCH_FRAME_SIZE / 2)
pitch_shift_workspace[index] += magnitudes[k];
}
// track where the shifted magnitudes are
magnitudes = pitch_shift_workspace;
{
__m128* magnitudes4 = (__m128*)magnitudes;
__m128* frequencies4 = (__m128*)frequencies;
__m128* fft_data = (__m128*)pf->fft_data;
__m128* sum_phase = (__m128*)pf->sum_phase;
int simd_count = (CUTE_SOUND_PITCH_FRAME_SIZE / 2) / 4;
for (int k = 0; k <= simd_count; k++)
{
__m128 mag = magnitudes4[k];
__m128 freq = frequencies4[k];
__m128 freq_per_bin_k = _mm_set_ps((float)(k * 4 + 3) * freqPerBin, (float)(k * 4 + 2) * freqPerBin, (float)(k * 4 + 1) * freqPerBin, (float)(k * 4) * freqPerBin);
freq = _mm_sub_ps(freq, freq_per_bin_k);
freq = _mm_div_ps(freq, freq_per_bin);
freq = _mm_mul_ps(two_pi, freq);
freq = _mm_div_ps(freq, pitch_quality);
__m128 overlap_phase = _mm_set_ps((float)(k * 4 + 3) * CUTE_SOUND_EXPECTED_FREQUENCY, (float)(k * 4 + 2) * CUTE_SOUND_EXPECTED_FREQUENCY, (float)(k * 4 + 1) * CUTE_SOUND_EXPECTED_FREQUENCY, (float)(k * 4) * CUTE_SOUND_EXPECTED_FREQUENCY);
freq = _mm_add_ps(freq, overlap_phase);
__m128 phase = sum_phase[k];
phase = _mm_add_ps(phase, freq);
sum_phase[k] = phase;
__m128 c, s;
_mm_sincos_ps(phase, &s, &c);
__m128 real = _mm_mul_ps(mag, c);
__m128 imag = _mm_mul_ps(mag, s);
fft_data[k] = real;
fft_data[(CUTE_SOUND_PITCH_FRAME_SIZE / 4) + k] = imag;
}
}
for (int k = CUTE_SOUND_PITCH_FRAME_SIZE + 2; k < 2 * CUTE_SOUND_PITCH_FRAME_SIZE - 2; ++k)
pf->fft_data[k] = 0;
s_fft(pf->fft_data, pf->fft_data + CUTE_SOUND_PITCH_FRAME_SIZE, CUTE_SOUND_PITCH_FRAME_SIZE, -1);
{
__m128* fft_data = (__m128*)pf->fft_data;
__m128* window_accumulator = (__m128*)pf->window_accumulator;
for (int k = 0; k < CUTE_SOUND_PITCH_FRAME_SIZE / 4; ++k)
{
__m128 von_hann = s_vonhann4(k);
__m128 fft_data_segment = fft_data[k];
__m128 accumulator_segment = window_accumulator[k];
__m128 divisor = _mm_div_ps(pitch_quality, _mm_set_ps1(8.0f));
fft_data_segment = _mm_mul_ps(von_hann, fft_data_segment);
fft_data_segment = _mm_div_ps(fft_data_segment, divisor);
accumulator_segment = _mm_add_ps(accumulator_segment, fft_data_segment);
window_accumulator[k] = accumulator_segment;
}
}
memcpy(pf->out_FIFO, pf->window_accumulator, CUTE_SOUND_STEPSIZE * sizeof(float));
memmove(pf->window_accumulator, pf->window_accumulator + CUTE_SOUND_STEPSIZE, CUTE_SOUND_PITCH_FRAME_SIZE * sizeof(float));
memmove(pf->in_FIFO, pf->in_FIFO + CUTE_SOUND_STEPSIZE, CUTE_SOUND_OVERLAP * sizeof(float));
}
}
return 1;
}
static void s_on_make_playing_sound(cs_context_t* cs_ctx, void* plugin_instance, void** playing_sound_udata, const cs_playing_sound_t* sound)
{
(void)cs_ctx;
(void)plugin_instance;
(void)playing_sound_udata;
(void)sound;
// Don't construct `csp_data_t` here, instead only do it on demand when `csp_set_pitch` is called.
}
static void s_on_free_playing_sound(cs_context_t* cs_ctx, void* plugin_instance, void* playing_sound_udata, const cs_playing_sound_t* sound)
{
(void)cs_ctx;
(void)plugin_instance;
(void)sound;
if (playing_sound_udata)
{
csp_data_t* pitch_data = (csp_data_t*)playing_sound_udata;
for (int i = 0; i < pitch_data->channel_count; ++i)
{
csp_filter_t* filter = pitch_data->filters[i];
cs_free16(filter, NULL);
}
CUTE_SOUND_FREE(pitch_data, NULL);
}
}
static void s_on_mix_fn(cs_context_t* cs_ctx, void* plugin_instance, int channel_index, const float* samples_in, int sample_count, float** samples_out, void* playing_sound_udata, const cs_playing_sound_t* sound)
{
CUTE_SOUND_ASSERT(channel_index >= 0);
CUTE_SOUND_ASSERT(channel_index <= 1);
(void)plugin_instance;
(void)sound;
if (!playing_sound_udata) return;
csp_data_t* pitch_data = (csp_data_t*)playing_sound_udata;
csp_filter_t* filter = pitch_data->filters[channel_index];
int success = s_pitch_shift(sample_count, (float)cs_ctx->Hz, samples_in, filter);
if (success) *samples_out = filter->pitch_shifted_output_samples;
else *samples_out = (float*)samples_in;
}
void csp_set_pitch(cs_playing_sound_t* sound, float pitch, cs_plugin_id_t id)
{
CUTE_SOUND_ASSERT(id >= 0 && id < CUTE_SOUND_PLUGINS_MAX);
if (pitch == 1.0f) return;
csp_data_t* pitch_data = (csp_data_t*)sound->plugin_udata[id];
if (!pitch_data)
{
pitch_data = (csp_data_t*)CUTE_SOUND_ALLOC(sizeof(csp_data_t), NULL);
memset(pitch_data, 0, sizeof(csp_data_t));
pitch_data->channel_count = sound->loaded_sound->channel_count;
sound->plugin_udata[id] = pitch_data;
for (int i = 0; i < pitch_data->channel_count; ++i)
{
csp_filter_t* filter = (csp_filter_t*)cs_malloc16(sizeof(csp_filter_t), NULL);
memset(filter, 0, sizeof(csp_filter_t));
filter->pitch = pitch;
pitch_data->filters[i] = filter;
}
}
for (int i = 0; i < pitch_data->channel_count; ++i)
{
csp_filter_t* filter = pitch_data->filters[i];
filter->pitch = pitch;
}
}
cs_plugin_interface_t csp_get_pitch_plugin()
{
cs_plugin_interface_t plugin;
plugin.plugin_instance = NULL;
plugin.on_make_playing_sound_fn = s_on_make_playing_sound;
plugin.on_free_playing_sound_fn = s_on_free_playing_sound;
plugin.on_mix_fn = s_on_mix_fn;
return plugin;
}
#endif // CUTE_SOUND_PITCH_PLUGIN_IMPLEMENTATION_ONCE
#endif // CUTE_SOUND_PITCH_PLUGIN_IMPLEMENTATION