-
Notifications
You must be signed in to change notification settings - Fork 48
/
mp_dataset.py
422 lines (365 loc) · 17.3 KB
/
mp_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
import torch
from torch.utils.data import Dataset
from torchvision import transforms
import torch.nn.functional as F
from PIL import Image
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
from pillow_heif import register_heif_opener
register_heif_opener()
import pillow_heif
pillow_heif.register_avif_opener() # support .avif image at 08.10
import os, glob, random, pdb, cv2, math, json, time, traceback
import numpy as np
from transformers import CLIPTextModel, CLIPTokenizer, AutoTokenizer
from transformers import CLIPImageProcessor
from insightface.utils import face_align
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)
def resize_img_scale(image, img_scale=[960, 1280]):
ori_w, ori_h = image.size
max_long_edge = max(img_scale)
max_short_edge = min(img_scale)
scale_factor = min(max_long_edge / max(ori_h, ori_w), max_short_edge / min(ori_h, ori_w))
img_w = round(ori_w * float(scale_factor))
img_h = round(ori_h * float(scale_factor))
img_w, img_h = map(lambda x: x - x % 64, (img_w, img_h))
image = image.resize((img_w, img_h))
return image
# https://blog.csdn.net/qq_37541097/article/details/134766540
def cal_torch_theta(opencv_theta: np.ndarray, src_h: int, src_w: int, dst_h: int, dst_w: int):
m = np.concatenate([opencv_theta, np.array([[0., 0., 1.]], dtype=np.float32)])
m_inv = np.linalg.inv(m)
a = np.array([[2 / (src_w - 1), 0., -1.],
[0., 2 / (src_h - 1), -1.],
[0., 0., 1.]], dtype=np.float32)
b = np.array([[2 / (dst_w - 1), 0., -1.],
[0., 2 / (dst_h - 1), -1.],
[0., 0., 1.]], dtype=np.float32)
b_inv = np.linalg.inv(b)
pytorch_m = a @ m_inv @ b_inv
return pytorch_m[:2] # 3x2
class DynamicResize(object):
def __init__(self, scale_size=960):
self.img_scale = scale_size
def __call__(self, image):
ori_w, ori_h = image.size
max_long_edge = int(self.img_scale*1.5)
max_short_edge = self.img_scale
scale_factor = min(max_long_edge / max(ori_h, ori_w), max_short_edge / min(ori_h, ori_w))
img_w = round(ori_w * float(scale_factor))
img_h = round(ori_h * float(scale_factor))
img_w, img_h = map(lambda x: x - x % 64, (img_w, img_h))
image = image.resize((img_w, img_h))
return image
def draw_kps(image_pil, kps, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]):
stickwidth = 4
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
kps = np.array(kps)
w, h = image_pil.size
out_img = np.zeros([h, w, 3])
for i in range(len(limbSeq)):
index = limbSeq[i]
color = color_list[index[0]]
x = kps[index][:, 0]
y = kps[index][:, 1]
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
polygon = cv2.ellipse2Poly(
(int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1
)
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
out_img = (out_img * 0.6).astype(np.uint8)
for idx_kp, kp in enumerate(kps): # 0-4分别是左上,右上,中间,左下,右下
color = color_list[idx_kp]
x, y = kp
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
# import pdb; pdb.set_trace()
out_img_pil = Image.fromarray(out_img.astype(np.uint8)) # cv2 to pil, bgr to rgb
return out_img_pil
class MasktileDataset(Dataset):
def __init__(self, args=None, tokenizer=None, tokenizer2=None, t_drop_rate=0.05, i_drop_rate=0.05, ti_drop_rate=0.05, debug=False, istest=False):#TODO:mode
self.args = args
self.size = 1024
self.wh = [960, 1280]
self.hstack_ref = 0
self.use_vseg = 1
self.use_faceid = 1
self.use_facekps = 1
self.use_headseg = 0
self.use_unnorm = 0
self.load_caption_once = 1
self.debug = debug
self.istest = istest
self.mask_ratio = 16
self.faceid_loss = 0
self.mse_loss = 0
self.drop_pose = 1
self.add_anime = 0
self.sort_person = 0
if args:
self.wh = [args.resolution, int(args.resolution*1.34)]
self.hstack_ref = args.hstack_ref
self.use_vseg = args.use_vseg # default=1
self.use_faceid = args.use_faceid
self.use_facekps = args.use_facekps
self.use_headseg = args.use_headseg
self.use_unnorm = args.use_unnorm
self.drop_pose = args.drop_pose
self.add_anime = args.add_anime
self.sort_person = args.sort_person
if args.mask_loss_weight>0:
self.mask_ratio = 8
self.faceid_loss=args.faceid_loss
self.centercrop = transforms.Compose([
transforms.Resize(self.size, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(self.size),
])
self.transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
])
self.conditioning_transforms = transforms.Compose(
[
transforms.ToTensor(),
]
)
self.clip_image_processor = CLIPImageProcessor()
self.key_list = {1:[], 2:[], 3:[]}
self.total_caption = {}
if self.load_caption_once and not self.istest:
imgpath = 'examples/datasets'
self.read_valid_json(imgpath, addkey=['2']) # 65w
self.img_list = self.key_list[1] + 2*self.key_list[2] + 5*self.key_list[3] #
if not self.debug:
random.shuffle(self.img_list)
self.tokenizer = tokenizer; self.tokenizer2 = tokenizer2
self.i_drop_rate = i_drop_rate
self.t_drop_rate = t_drop_rate
self.ti_drop_rate = ti_drop_rate
self.color_list = np.array([[255,0,0], [0,255,0], [0,0,255], [255,255,0], [255,0,255], [0,255,255]])
def __len__(self):
return len(self.img_list)
def read_valid_json(self, imgpath, addkey=['1', '2', '3']):
jsonname = 'test.json'
valid_data = json.load(open(os.path.join(imgpath, jsonname), 'r'))
for i in range(1,4):
if str(i) in addkey:
self.key_list[i] += valid_data[str(i)]
print(imgpath, len(valid_data['1']), len(valid_data['2']), len(valid_data['3']))
print('total key_list:', len(self.key_list[1]), len(self.key_list[2]), len(self.key_list[3]))
def __getitem__(self, idx):
data = self.img_list[idx]
return self.help_realistic(data)
def help_realistic(self, data):
cur_img, cur_pose, cur_mask, text, blen, faceid_path = data
name = cur_img.split('/')[-1]; imgname = name
ori_img = Image.open(cur_img).convert("RGB")
oriw, orih = ori_img.size
cur_img = resize_img_scale(ori_img, self.wh)
gt_w, gt_h = cur_img.size
cur_pose = Image.open(cur_pose).convert("RGB")
box_w, box_h = cur_pose.size # bbox shape same to pose, use it to rescale bbox
ori_mask = Image.open(cur_mask).convert("RGB").resize((oriw, orih))
bbox = np.zeros((blen, 1))
mp_list, maxw, maxh, face_list, mask_list,face_kps_abs = self.crop_refimg(ori_img, ori_mask, bbox, faceid_path=faceid_path, return_mask=True, imgname=imgname)
faceid_list = []
for idx, ref_img in enumerate(mp_list):
face_id_embed = torch.load(os.path.join(faceid_path, f'{idx}.bin'), map_location="cpu")['id']
if self.faceid_loss>0:
M=face_align.estimate_norm(face_kps_abs[idx]/oriw*gt_w, image_size=112, )
Mt = cal_torch_theta(M, gt_h,gt_w, 112, 112)
faceid_list.append([ref_img, face_id_embed, face_list[idx], mask_list[idx], Mt])
else:
faceid_list.append([ref_img, face_id_embed, face_list[idx], mask_list[idx]])
if self.sort_person:
faceid_list = sorted(faceid_list, key=lambda x: (np.nonzero(x[3][:,:,0])[1].min()+np.nonzero(x[3][:,:,0])[1].max())//2 )
# else:
# random.shuffle(faceid_list)
if self.faceid_loss>0:
clip_image, face_id_embed, clip_face, mask_gt, face_kps_abs = self.concat_clip_faceid_addface(faceid_list, gt_h, gt_w)
else:
clip_image, face_id_embed, clip_face, mask_gt = self.concat_clip_faceid_addface(faceid_list, gt_h, gt_w)
face_kps_abs = torch.zeros_like(face_id_embed)
face_unnorm_embed = torch.zeros_like(face_id_embed)
image_gt = self.transform(cur_img)
pose_cond = self.conditioning_transforms(cur_pose.resize((gt_w, gt_h)))
drop_image_embed = 0
rand_num = random.random()
if rand_num < self.i_drop_rate:
drop_image_embed = 1
elif rand_num < (self.i_drop_rate + self.t_drop_rate):
text = ""
elif rand_num < (self.i_drop_rate + self.t_drop_rate + self.ti_drop_rate):
text = ""
drop_image_embed = 1
text_input_ids = self.tokenizer(
text,
max_length=self.tokenizer.model_max_length,
padding="max_length",
truncation=True,
return_tensors="pt"
).input_ids
text_input_ids2 = self.tokenizer2(
text,
max_length=self.tokenizer2.model_max_length,
padding="max_length",
truncation=True,
return_tensors="pt"
).input_ids
w,h = self.wh
topleft = [gt_h, gt_w, 0, 0, h, w]
return {
"image_gt": image_gt, # B,3,resolution,resolution
"image_ref": pose_cond, # B,3,resolution,resolution
"text_input_ids": text_input_ids, #B,77
"text_input_ids2": text_input_ids2, #B,77
"clip_image": clip_image, # B,3,224,224
"drop_image_embed": drop_image_embed,
"topleft": torch.tensor([topleft]),
"face_id_embed": face_id_embed, "face_kps_abs": face_kps_abs,
"face_unnorm_embed": face_unnorm_embed,
"clip_face": clip_face,
"mask_gt": mask_gt, "style": torch.tensor([0])
}
def crop_refimg(self, ori_img, ori_mask, bbox=None, rotate=1, faceid_path=None, return_mask=False, imgname='aaa'):
mp_list = []; crop_list = []; face_list = []; mask_list = []; head_list = []; face_kps_abs = []
w, h = ori_img.size
blen = bbox.shape[0]
maxh, maxw = 0,0
for i in range(min(3, blen)):
cv2_mask = cv2.cvtColor(np.array(ori_mask), cv2.COLOR_RGB2BGR)
mask = cv2.inRange(cv2_mask, self.color_list[i], self.color_list[i])
mask = np.tile(mask[:,:,None], (1,1,3));
mask_ori = cv2.erode(mask, np.ones((7,7), np.uint8), iterations=1)
mask = cv2.dilate(mask, np.ones((7,7), np.uint8), iterations=1)
mask = cv2.GaussianBlur(mask, (5, 5), 0);
mask_list.append(mask)
crop, mask, mask_ori, lefttop = self.bounding_rectangle(ori_img, mask, mask_ori)
crop = (255*np.ones_like(mask)*(1-mask)+mask*np.array(crop)).astype(np.uint8)
face_kps = torch.load(os.path.join(faceid_path, f'{i}.bin'), map_location="cpu")['kps']
face_image = face_align.norm_crop(crop, landmark=face_kps.numpy(), image_size=224) # 224
clip_face = self.clip_image_processor(images=face_image, return_tensors="pt").pixel_values
face_list.append(clip_face)
if self.faceid_loss>0 or return_mask:
kps_abs = face_kps.numpy()+lefttop; face_kps_abs.append(kps_abs)
ref_img = Image.fromarray(crop); crop_list.append(ref_img)
rw,rh = ref_img.size
if rotate:
rw,rh = ref_img.size
angle_range = 10
ref_img = ref_img.rotate(random.uniform(-angle_range, angle_range), fillcolor = 'white', expand=False)
ref_img = ref_img.resize((224, 224), resample=LANCZOS) # square keep full info after 05.23
mp_list.append(ref_img)
w, h = ref_img.size
maxw, maxh = max(maxw, w), max(maxh, h)
if self.debug:
tmp = [[crop, mask] for crop, mask in zip(crop_list, mask_list)]
tmp = sorted(tmp, key=lambda x: (np.nonzero(x[1][:,:,0])[1].min()+np.nonzero(x[1][:,:,0])[1].max())//2)
crop_list = [x[0] for x in tmp]
debug_cropimg(ori_img, ori_mask, crop_list, head_list, imgname)
if faceid_path is not None:
if return_mask:
return mp_list, maxw, maxh, face_list, mask_list, face_kps_abs
else:
return mp_list, maxw, maxh, face_list
return mp_list, maxw, maxh
def concat_clip_faceid_addface(self, mp_list, gt_h, gt_w):
out_list = []; id_list = []; face_list = []; mask_list = []; unnorm_list = []
for each in mp_list:
if self.use_unnorm:
ref_img, id_embed, unnorm_embed, face_clip, mask = each
unnorm_list.append(unnorm_embed)
elif self.faceid_loss>0:
ref_img, id_embed, face_clip, mask, kps = each
unnorm_list.append(torch.from_numpy(kps).unsqueeze(0)) # to 1x5x2
else:
ref_img, id_embed, face_clip, mask = each
clip_image = self.clip_image_processor(images=ref_img, return_tensors="pt").pixel_values
out_list.append(clip_image)
id_list.append(id_embed)
face_list.append(face_clip)
mask = cv2.resize(mask, (gt_w//self.mask_ratio, gt_h//self.mask_ratio))
mask_list.append(torch.from_numpy(mask[:,:,:1]/255.))
clip_image = torch.cat(out_list, dim=0)
id_embed = torch.cat(id_list, dim=0)
clip_face = torch.cat(face_list, dim=0)
mask = torch.cat(mask_list, dim=2)
if self.use_unnorm:
unnorm_embed = torch.cat(unnorm_list, dim=0)
return clip_image, id_embed, unnorm_embed, clip_face, mask
elif self.faceid_loss>0:
face_kps = torch.cat(unnorm_list, dim=0) # num_imgs, 5, 2
return clip_image, id_embed, clip_face, mask, face_kps
return clip_image, id_embed, clip_face, mask
def bounding_rectangle(self, ori_img, mask, mask_ori):
"""
Calculate the bounding rectangle of multiple rectangles.
Args:
rectangles (list of tuples): List of rectangles, where each rectangle is represented as (x, y, w, h)
Returns:
tuple: The bounding rectangle (x, y, w, h)
"""
contours, _ = cv2.findContours(mask[:,:,0], cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
rectangles = [cv2.boundingRect(contour) for contour in contours]
min_x = float('inf')
min_y = float('inf')
max_x = float('-inf')
max_y = float('-inf')
for x, y, w, h in rectangles:
min_x = min(min_x, x)
min_y = min(min_y, y)
max_x = max(max_x, x + w)
max_y = max(max_y, y + h)
try:
crop = np.array(ori_img.crop((min_x, min_y, max_x, max_y)))
mask = mask[min_y:max_y, min_x:max_x]
mask_ori = mask_ori[min_y:max_y, min_x:max_x]
except:
traceback.print_exc()
pass
return crop, mask/255., mask_ori, np.array([min_x,min_y]).reshape(1,2) # left, top
def debug_cropimg(ori_img, ori_mask, crop_list, head_list=[], imgname=None):
w, h = ori_img.size
img2 = Image.new("RGB", (w*2, h*2), "black")
img2.paste(ori_img, (0,0))
img2.paste(ori_mask, (w,0))
img2.paste(crop_list[0], (0,h))
if len(head_list)>0:
img2.paste(head_list[0], (w//2,h))
if len(crop_list)>1:
img2.paste(crop_list[1], (w, h))
if len(head_list)>0:
img2.paste(head_list[1], (w//2*3,h))
if len(crop_list)>2:
img2.paste(crop_list[2], (w//3, h//3))
if len(head_list)>0:
img2.paste(head_list[2], (w//3*2,h//3))
if imgname is None:
imgname=generate_random_string(16)+'.jpg'
savename = os.path.join(savepath, imgname)
img2.save(savename)
print(imgname, h,w, len(crop_list))
# pdb.set_trace()
savepath = 'imgs/'; os.makedirs(savepath, exist_ok=True)
import random
import string
def generate_random_string(length):
# 生成随机的数字和字母
letters = string.ascii_letters + string.digits
# 生成指定长度的随机字符串
return ''.join(random.choice(letters) for i in range(length))
import torch.utils.data.distributed as dist
def test_datasets():
base_model = 'stable-diffusion-xl-base-1.0'
tokenizer = AutoTokenizer.from_pretrained(
base_model, subfolder="tokenizer", use_fast=False
)
tokenizer2 = AutoTokenizer.from_pretrained(
base_model, subfolder="tokenizer_2", use_fast=False
)
train_dataset = MasktileDataset(args=0, tokenizer=tokenizer, tokenizer2=tokenizer2, debug=True)
t0=time.time(); res = []
for idx in range(1000):
data = train_dataset.__getitem__(idx)
if __name__ == '__main__':
test_datasets()