-
Notifications
You must be signed in to change notification settings - Fork 7
/
tdd_scheduler.py
515 lines (461 loc) · 23.6 KB
/
tdd_scheduler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
from diffusers import TCDScheduler, DPMSolverSinglestepScheduler
from diffusers.schedulers.scheduling_tcd import *
from diffusers.schedulers.scheduling_dpmsolver_singlestep import *
class TDDScheduler(DPMSolverSinglestepScheduler):
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.0001,
beta_end: float = 0.02,
beta_schedule: str = "linear",
trained_betas: Optional[np.ndarray] = None,
solver_order: int = 1,
prediction_type: str = "epsilon",
thresholding: bool = False,
dynamic_thresholding_ratio: float = 0.995,
sample_max_value: float = 1.0,
algorithm_type: str = "dpmsolver++",
solver_type: str = "midpoint",
lower_order_final: bool = False,
use_karras_sigmas: Optional[bool] = False,
final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min"
lambda_min_clipped: float = -float("inf"),
variance_type: Optional[str] = None,
tdd_train_step: int = 250,
special_jump: bool = False,
t_l: int = -1
):
self.t_l = t_l
self.special_jump = special_jump
self.tdd_train_step = tdd_train_step
if algorithm_type == "dpmsolver":
deprecation_message = "algorithm_type `dpmsolver` is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead"
deprecate("algorithm_types=dpmsolver", "1.0.0", deprecation_message)
if trained_betas is not None:
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
elif beta_schedule == "linear":
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
else:
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
self.alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
# Currently we only support VP-type noise schedule
self.alpha_t = torch.sqrt(self.alphas_cumprod)
self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5
# standard deviation of the initial noise distribution
self.init_noise_sigma = 1.0
# settings for DPM-Solver
if algorithm_type not in ["dpmsolver", "dpmsolver++"]:
if algorithm_type == "deis":
self.register_to_config(algorithm_type="dpmsolver++")
else:
raise NotImplementedError(f"{algorithm_type} does is not implemented for {self.__class__}")
if solver_type not in ["midpoint", "heun"]:
if solver_type in ["logrho", "bh1", "bh2"]:
self.register_to_config(solver_type="midpoint")
else:
raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}")
if algorithm_type != "dpmsolver++" and final_sigmas_type == "zero":
raise ValueError(
f"`final_sigmas_type` {final_sigmas_type} is not supported for `algorithm_type` {algorithm_type}. Please chooose `sigma_min` instead."
)
# setable values
self.num_inference_steps = None
timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
self.timesteps = torch.from_numpy(timesteps)
self.model_outputs = [None] * solver_order
self.sample = None
self.order_list = self.get_order_list(num_train_timesteps)
self._step_index = None
self._begin_index = None
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
self.num_inference_steps = num_inference_steps
# Clipping the minimum of all lambda(t) for numerical stability.
# This is critical for cosine (squaredcos_cap_v2) noise schedule.
#original_steps = self.config.original_inference_steps
if True:
original_steps=self.tdd_train_step
k = 1000 / original_steps
tcd_origin_timesteps = np.asarray(list(range(1, int(original_steps) + 1))) * k - 1
else:
tcd_origin_timesteps = np.asarray(list(range(0, int(self.config.num_train_timesteps))))
# TCD Inference Steps Schedule
tcd_origin_timesteps = tcd_origin_timesteps[::-1].copy()
# Select (approximately) evenly spaced indices from tcd_origin_timesteps.
inference_indices = np.linspace(0, len(tcd_origin_timesteps), num=num_inference_steps, endpoint=False)
inference_indices = np.floor(inference_indices).astype(np.int64)
timesteps = tcd_origin_timesteps[inference_indices]
if self.special_jump:
if self.tdd_train_step == 50:
#timesteps = np.array([999., 879., 759., 499., 259.])
print(timesteps)
elif self.tdd_train_step == 250:
if num_inference_steps == 5:
timesteps = np.array([999., 875., 751., 499., 251.])
elif num_inference_steps == 6:
timesteps = np.array([999., 875., 751., 627., 499., 251.])
elif num_inference_steps == 7:
timesteps = np.array([999., 875., 751., 627., 499., 375., 251.])
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
if self.config.use_karras_sigmas:
log_sigmas = np.log(sigmas)
sigmas = np.flip(sigmas).copy()
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
else:
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
if self.config.final_sigmas_type == "sigma_min":
sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
elif self.config.final_sigmas_type == "zero":
sigma_last = 0
else:
raise ValueError(
f" `final_sigmas_type` must be one of `sigma_min` or `zero`, but got {self.config.final_sigmas_type}"
)
sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
self.sigmas = torch.from_numpy(sigmas).to(device=device)
self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)
self.model_outputs = [None] * self.config.solver_order
self.sample = None
if not self.config.lower_order_final and num_inference_steps % self.config.solver_order != 0:
logger.warning(
"Changing scheduler {self.config} to have `lower_order_final` set to True to handle uneven amount of inference steps. Please make sure to always use an even number of `num_inference steps when using `lower_order_final=False`."
)
self.register_to_config(lower_order_final=True)
if not self.config.lower_order_final and self.config.final_sigmas_type == "zero":
logger.warning(
" `last_sigmas_type='zero'` is not supported for `lower_order_final=False`. Changing scheduler {self.config} to have `lower_order_final` set to True."
)
self.register_to_config(lower_order_final=True)
self.order_list = self.get_order_list(num_inference_steps)
# add an index counter for schedulers that allow duplicated timesteps
self._step_index = None
self._begin_index = None
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
def set_timesteps_s(self, eta: float = 0.0):
# Clipping the minimum of all lambda(t) for numerical stability.
# This is critical for cosine (squaredcos_cap_v2) noise schedule.
num_inference_steps = self.num_inference_steps
device = self.timesteps.device
if True:
original_steps=self.tdd_train_step
k = 1000 / original_steps
tcd_origin_timesteps = np.asarray(list(range(1, int(original_steps) + 1))) * k - 1
else:
tcd_origin_timesteps = np.asarray(list(range(0, int(self.config.num_train_timesteps))))
# TCD Inference Steps Schedule
tcd_origin_timesteps = tcd_origin_timesteps[::-1].copy()
# Select (approximately) evenly spaced indices from tcd_origin_timesteps.
inference_indices = np.linspace(0, len(tcd_origin_timesteps), num=num_inference_steps, endpoint=False)
inference_indices = np.floor(inference_indices).astype(np.int64)
timesteps = tcd_origin_timesteps[inference_indices]
if self.special_jump:
if self.tdd_train_step == 50:
timesteps = np.array([999., 879., 759., 499., 259.])
elif self.tdd_train_step == 250:
if num_inference_steps == 5:
timesteps = np.array([999., 875., 751., 499., 251.])
elif num_inference_steps == 6:
timesteps = np.array([999., 875., 751., 627., 499., 251.])
elif num_inference_steps == 7:
timesteps = np.array([999., 875., 751., 627., 499., 375., 251.])
timesteps_s = np.floor((1 - eta) * timesteps).astype(np.int64)
sigmas_s = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
if self.config.use_karras_sigmas:
print("have not write")
pass
else:
sigmas_s = np.interp(timesteps_s, np.arange(0, len(sigmas_s)), sigmas_s)
if self.config.final_sigmas_type == "sigma_min":
sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
elif self.config.final_sigmas_type == "zero":
sigma_last = 0
else:
raise ValueError(
f" `final_sigmas_type` must be one of `sigma_min` or `zero`, but got {self.config.final_sigmas_type}"
)
sigmas_s = np.concatenate([sigmas_s, [sigma_last]]).astype(np.float32)
self.sigmas_s = torch.from_numpy(sigmas_s).to(device=device)
self.timesteps_s = torch.from_numpy(timesteps_s).to(device=device, dtype=torch.int64)
def step(
self,
model_output: torch.FloatTensor,
timestep: int,
sample: torch.FloatTensor,
eta: float,
generator: Optional[torch.Generator] = None,
return_dict: bool = True,
) -> Union[SchedulerOutput, Tuple]:
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
if self.step_index is None:
self._init_step_index(timestep)
if self.step_index == 0:
self.set_timesteps_s(eta)
model_output = self.convert_model_output(model_output, sample=sample)
for i in range(self.config.solver_order - 1):
self.model_outputs[i] = self.model_outputs[i + 1]
self.model_outputs[-1] = model_output
order = self.order_list[self.step_index]
# For img2img denoising might start with order>1 which is not possible
# In this case make sure that the first two steps are both order=1
while self.model_outputs[-order] is None:
order -= 1
# For single-step solvers, we use the initial value at each time with order = 1.
if order == 1:
self.sample = sample
prev_sample = self.singlestep_dpm_solver_update(self.model_outputs, sample=self.sample, order=order)
if eta > 0:
if self.step_index != self.num_inference_steps - 1:
alpha_prod_s = self.alphas_cumprod[self.timesteps_s[self.step_index + 1]]
alpha_prod_t_prev = self.alphas_cumprod[self.timesteps[self.step_index + 1]]
noise = randn_tensor(
model_output.shape, generator=generator, device=model_output.device, dtype=prev_sample.dtype
)
prev_sample = (alpha_prod_t_prev / alpha_prod_s).sqrt() * prev_sample + (
1 - alpha_prod_t_prev / alpha_prod_s
).sqrt() * noise
# upon completion increase step index by one
self._step_index += 1
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=prev_sample)
def dpm_solver_first_order_update(
self,
model_output: torch.FloatTensor,
*args,
sample: torch.FloatTensor = None,
**kwargs,
) -> torch.FloatTensor:
timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
if sample is None:
if len(args) > 2:
sample = args[2]
else:
raise ValueError(" missing `sample` as a required keyward argument")
if timestep is not None:
deprecate(
"timesteps",
"1.0.0",
"Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
)
if prev_timestep is not None:
deprecate(
"prev_timestep",
"1.0.0",
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
)
sigma_t, sigma_s = self.sigmas_s[self.step_index + 1], self.sigmas[self.step_index]
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
lambda_s = torch.log(alpha_s) - torch.log(sigma_s)
h = lambda_t - lambda_s
if self.config.algorithm_type == "dpmsolver++":
x_t = (sigma_t / sigma_s) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * model_output
elif self.config.algorithm_type == "dpmsolver":
x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output
return x_t
def singlestep_dpm_solver_second_order_update(
self,
model_output_list: List[torch.FloatTensor],
*args,
sample: torch.FloatTensor = None,
**kwargs,
) -> torch.FloatTensor:
timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
if sample is None:
if len(args) > 2:
sample = args[2]
else:
raise ValueError(" missing `sample` as a required keyward argument")
if timestep_list is not None:
deprecate(
"timestep_list",
"1.0.0",
"Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
)
if prev_timestep is not None:
deprecate(
"prev_timestep",
"1.0.0",
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
)
sigma_t, sigma_s0, sigma_s1 = (
self.sigmas_s[self.step_index + 1],
self.sigmas[self.step_index],
self.sigmas[self.step_index - 1],
)
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
m0, m1 = model_output_list[-1], model_output_list[-2]
h, h_0 = lambda_t - lambda_s1, lambda_s0 - lambda_s1
r0 = h_0 / h
D0, D1 = m1, (1.0 / r0) * (m0 - m1)
if self.config.algorithm_type == "dpmsolver++":
# See https://arxiv.org/abs/2211.01095 for detailed derivations
if self.config.solver_type == "midpoint":
x_t = (
(sigma_t / sigma_s1) * sample
- (alpha_t * (torch.exp(-h) - 1.0)) * D0
- 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1
)
elif self.config.solver_type == "heun":
x_t = (
(sigma_t / sigma_s1) * sample
- (alpha_t * (torch.exp(-h) - 1.0)) * D0
+ (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
)
elif self.config.algorithm_type == "dpmsolver":
# See https://arxiv.org/abs/2206.00927 for detailed derivations
if self.config.solver_type == "midpoint":
x_t = (
(alpha_t / alpha_s1) * sample
- (sigma_t * (torch.exp(h) - 1.0)) * D0
- 0.5 * (sigma_t * (torch.exp(h) - 1.0)) * D1
)
elif self.config.solver_type == "heun":
x_t = (
(alpha_t / alpha_s1) * sample
- (sigma_t * (torch.exp(h) - 1.0)) * D0
- (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
)
return x_t
def singlestep_dpm_solver_update(
self,
model_output_list: List[torch.FloatTensor],
*args,
sample: torch.FloatTensor = None,
order: int = None,
**kwargs,
) -> torch.FloatTensor:
timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
if sample is None:
if len(args) > 2:
sample = args[2]
else:
raise ValueError(" missing`sample` as a required keyward argument")
if order is None:
if len(args) > 3:
order = args[3]
else:
raise ValueError(" missing `order` as a required keyward argument")
if timestep_list is not None:
deprecate(
"timestep_list",
"1.0.0",
"Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
)
if prev_timestep is not None:
deprecate(
"prev_timestep",
"1.0.0",
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
)
if order == 1:
return self.dpm_solver_first_order_update(model_output_list[-1], sample=sample)
elif order == 2:
return self.singlestep_dpm_solver_second_order_update(model_output_list, sample=sample)
else:
raise ValueError(f"Order must be 1, 2, got {order}")
def convert_model_output(
self,
model_output: torch.FloatTensor,
*args,
sample: torch.FloatTensor = None,
**kwargs,
) -> torch.FloatTensor:
"""
Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
integral of the data prediction model.
<Tip>
The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise
prediction and data prediction models.
</Tip>
Args:
model_output (`torch.FloatTensor`):
The direct output from the learned diffusion model.
sample (`torch.FloatTensor`):
A current instance of a sample created by the diffusion process.
Returns:
`torch.FloatTensor`:
The converted model output.
"""
timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
if sample is None:
if len(args) > 1:
sample = args[1]
else:
raise ValueError("missing `sample` as a required keyward argument")
if timestep is not None:
deprecate(
"timesteps",
"1.0.0",
"Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
)
# DPM-Solver++ needs to solve an integral of the data prediction model.
if self.config.algorithm_type == "dpmsolver++":
if self.config.prediction_type == "epsilon":
# DPM-Solver and DPM-Solver++ only need the "mean" output.
if self.config.variance_type in ["learned_range"]:
model_output = model_output[:, :3]
sigma = self.sigmas[self.step_index]
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
x0_pred = (sample - sigma_t * model_output) / alpha_t
elif self.config.prediction_type == "sample":
x0_pred = model_output
elif self.config.prediction_type == "v_prediction":
sigma = self.sigmas[self.step_index]
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
x0_pred = alpha_t * sample - sigma_t * model_output
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
" `v_prediction` for the DPMSolverSinglestepScheduler."
)
if self.step_index <= self.t_l:
if self.config.thresholding:
x0_pred = self._threshold_sample(x0_pred)
return x0_pred
# DPM-Solver needs to solve an integral of the noise prediction model.
elif self.config.algorithm_type == "dpmsolver":
if self.config.prediction_type == "epsilon":
# DPM-Solver and DPM-Solver++ only need the "mean" output.
if self.config.variance_type in ["learned_range"]:
model_output = model_output[:, :3]
return model_output
elif self.config.prediction_type == "sample":
sigma = self.sigmas[self.step_index]
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
epsilon = (sample - alpha_t * model_output) / sigma_t
return epsilon
elif self.config.prediction_type == "v_prediction":
sigma = self.sigmas[self.step_index]
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
epsilon = alpha_t * model_output + sigma_t * sample
return epsilon
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
" `v_prediction` for the DPMSolverSinglestepScheduler."
)