简体中文 | English
PaddleDetection深入探索核心行业的高频场景,提供了行人、车辆场景的开箱即用分析工具,支持图片/单镜头视频/多镜头视频/在线视频流多种输入方式,广泛应用于智慧交通、智慧城市、工业巡检等领域。支持服务器端部署及TensorRT加速,T4服务器上可达到实时。
-
🚶♂️🚶♀️ PP-Human支持四大产业级功能:五大异常行为识别、26种人体属性分析、实时人流计数、跨镜头(ReID)跟踪。
-
🚗🚙 PP-Vehicle囊括四大交通场景核心功能:车牌识别、属性识别、车流量统计、违章检测。
- 🔥🔥🔥 2022.8.20:PP-Vehicle首发,提供车牌识别、车辆属性分析(颜色、车型)、车流量统计以及违章检测四大功能,完善的文档教程支持高效完成二次开发与模型优化
- 2022.7.13:PP-Human v2发布,新增打架、打电话、抽烟、闯入四大行为识别,底层算法性能升级,覆盖行人检测、跟踪、属性三类核心算法能力,提供保姆级全流程开发及模型优化策略
- 2022.4.18:新增PP-Human全流程实战教程, 覆盖训练、部署、动作类型扩展等内容,AIStudio项目请见链接
- 2022.4.10:新增PP-Human范例,赋能社区智能精细化管理, AIStudio快速上手教程链接
- 2022.4.5:全新发布实时行人分析工具PP-Human,支持行人跟踪、人流量统计、人体属性识别与摔倒检测四大能力,基于真实场景数据特殊优化,精准识别各类摔倒姿势,适应不同环境背景、光线及摄像角度
端到端模型效果(点击展开)
任务 | 端到端速度(ms) | 模型方案 | 模型体积 |
---|---|---|---|
行人检测(高精度) | 25.1ms | 多目标跟踪 | 182M |
行人检测(轻量级) | 16.2ms | 多目标跟踪 | 27M |
行人跟踪(高精度) | 31.8ms | 多目标跟踪 | 182M |
行人跟踪(轻量级) | 21.0ms | 多目标跟踪 | 27M |
跨镜跟踪(REID) | 单人1.5ms | REID | REID:92M |
属性识别(高精度) | 单人8.5ms | 目标检测 属性识别 |
目标检测:182M 属性识别:86M |
属性识别(轻量级) | 单人7.1ms | 目标检测 属性识别 |
目标检测:182M 属性识别:86M |
摔倒识别 | 单人10ms | 多目标跟踪 关键点检测 基于关键点行为识别 |
多目标跟踪:182M 关键点检测:101M 基于关键点行为识别:21.8M |
闯入识别 | 31.8ms | 多目标跟踪 | 182M |
打架识别 | 19.7ms | 视频分类 | 90M |
抽烟识别 | 单人15.1ms | 目标检测 基于人体id的目标检测 |
目标检测:182M 基于人体id的目标检测:27M |
打电话识别 | 单人ms | 目标检测 基于人体id的图像分类 |
目标检测:182M 基于人体id的图像分类:45M |
点击模型方案中的模型即可下载指定模型,下载后解压存放至./output_inference
目录中