forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mtmct.py
342 lines (284 loc) · 11.3 KB
/
mtmct.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import motmetrics as mm
from pptracking.python.mot.visualize import plot_tracking
import os
import re
import cv2
import gc
import numpy as np
from sklearn import preprocessing
from sklearn.cluster import AgglomerativeClustering
import pandas as pd
from tqdm import tqdm
from functools import reduce
import warnings
warnings.filterwarnings("ignore")
def gen_restxt(output_dir_filename, map_tid, cid_tid_dict):
pattern = re.compile(r'c(\d)_t(\d)')
f_w = open(output_dir_filename, 'w')
for key, res in cid_tid_dict.items():
cid, tid = pattern.search(key).groups()
cid = int(cid) + 1
rects = res["rects"]
frames = res["frames"]
for idx, bbox in enumerate(rects):
bbox[0][3:] -= bbox[0][1:3]
fid = frames[idx] + 1
rect = [max(int(x), 0) for x in bbox[0][1:]]
if key in map_tid:
new_tid = map_tid[key]
f_w.write(
str(cid) + ' ' + str(new_tid) + ' ' + str(fid) + ' ' +
' '.join(map(str, rect)) + '\n')
print('gen_res: write file in {}'.format(output_dir_filename))
f_w.close()
def get_mtmct_matching_results(pred_mtmct_file, secs_interval=0.5,
video_fps=20):
res = np.loadtxt(pred_mtmct_file) # 'cid, tid, fid, x1, y1, w, h, -1, -1'
camera_ids = list(map(int, np.unique(res[:, 0])))
res = res[:, :7]
# each line in res: 'cid, tid, fid, x1, y1, w, h'
camera_tids = []
camera_results = dict()
for c_id in camera_ids:
camera_results[c_id] = res[res[:, 0] == c_id]
tids = np.unique(camera_results[c_id][:, 1])
tids = list(map(int, tids))
camera_tids.append(tids)
# select common tids throughout each video
common_tids = reduce(np.intersect1d, camera_tids)
# get mtmct matching results by cid_tid_fid_results[c_id][t_id][f_id]
cid_tid_fid_results = dict()
cid_tid_to_fids = dict()
interval = int(secs_interval * video_fps) # preferably less than 10
for c_id in camera_ids:
cid_tid_fid_results[c_id] = dict()
cid_tid_to_fids[c_id] = dict()
for t_id in common_tids:
tid_mask = camera_results[c_id][:, 1] == t_id
cid_tid_fid_results[c_id][t_id] = dict()
camera_trackid_results = camera_results[c_id][tid_mask]
fids = np.unique(camera_trackid_results[:, 2])
fids = fids[fids % interval == 0]
fids = list(map(int, fids))
cid_tid_to_fids[c_id][t_id] = fids
for f_id in fids:
st_frame = f_id
ed_frame = f_id + interval
st_mask = camera_trackid_results[:, 2] >= st_frame
ed_mask = camera_trackid_results[:, 2] < ed_frame
frame_mask = np.logical_and(st_mask, ed_mask)
cid_tid_fid_results[c_id][t_id][f_id] = camera_trackid_results[
frame_mask]
return camera_results, cid_tid_fid_results
def save_mtmct_vis_results(camera_results, captures, output_dir):
# camera_results: 'cid, tid, fid, x1, y1, w, h'
camera_ids = list(camera_results.keys())
import shutil
save_dir = os.path.join(output_dir, 'mtmct_vis')
if os.path.exists(save_dir):
shutil.rmtree(save_dir)
os.makedirs(save_dir)
for idx, video_file in enumerate(captures):
capture = cv2.VideoCapture(video_file)
cid = camera_ids[idx]
basename = os.path.basename(video_file)
video_out_name = "vis_" + basename
print("Start visualizing output video: {}".format(video_out_name))
out_path = os.path.join(save_dir, video_out_name)
# Get Video info : resolution, fps, frame count
width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(capture.get(cv2.CAP_PROP_FPS))
frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
frame_id = 0
while (1):
if frame_id % 50 == 0:
print('frame id: ', frame_id)
ret, frame = capture.read()
frame_id += 1
if not ret:
if frame_id == 1:
print("video read failed!")
break
frame_results = camera_results[cid][camera_results[cid][:, 2] ==
frame_id]
boxes = frame_results[:, -4:]
ids = frame_results[:, 1]
image = plot_tracking(frame, boxes, ids, frame_id=frame_id, fps=fps)
writer.write(image)
writer.release()
def get_euclidean(x, y, **kwargs):
m = x.shape[0]
n = y.shape[0]
distmat = (np.power(x, 2).sum(axis=1, keepdims=True).repeat(
n, axis=1) + np.power(y, 2).sum(axis=1, keepdims=True).repeat(
m, axis=1).T)
distmat -= np.dot(2 * x, y.T)
return distmat
def cosine_similarity(x, y, eps=1e-12):
"""
Computes cosine similarity between two tensors.
Value == 1 means the same vector
Value == 0 means perpendicular vectors
"""
x_n, y_n = np.linalg.norm(
x, axis=1, keepdims=True), np.linalg.norm(
y, axis=1, keepdims=True)
x_norm = x / np.maximum(x_n, eps * np.ones_like(x_n))
y_norm = y / np.maximum(y_n, eps * np.ones_like(y_n))
sim_mt = np.dot(x_norm, y_norm.T)
return sim_mt
def get_cosine(x, y, eps=1e-12):
"""
Computes cosine distance between two tensors.
The cosine distance is the inverse cosine similarity
-> cosine_distance = abs(-cosine_distance) to make it
similar in behaviour to euclidean distance
"""
sim_mt = cosine_similarity(x, y, eps)
return sim_mt
def get_dist_mat(x, y, func_name="euclidean"):
if func_name == "cosine":
dist_mat = get_cosine(x, y)
elif func_name == "euclidean":
dist_mat = get_euclidean(x, y)
print("Using {} as distance function during evaluation".format(func_name))
return dist_mat
def intracam_ignore(st_mask, cid_tids):
count = len(cid_tids)
for i in range(count):
for j in range(count):
if cid_tids[i][1] == cid_tids[j][1]:
st_mask[i, j] = 0.
return st_mask
def get_sim_matrix_new(cid_tid_dict, cid_tids):
# Note: camera independent get_sim_matrix function,
# which is different from the one in camera_utils.py.
count = len(cid_tids)
q_arr = np.array(
[cid_tid_dict[cid_tids[i]]['mean_feat'] for i in range(count)])
g_arr = np.array(
[cid_tid_dict[cid_tids[i]]['mean_feat'] for i in range(count)])
#compute distmat
distmat = get_dist_mat(q_arr, g_arr, func_name="cosine")
#mask the element which belongs to same video
st_mask = np.ones((count, count), dtype=np.float32)
st_mask = intracam_ignore(st_mask, cid_tids)
sim_matrix = distmat * st_mask
np.fill_diagonal(sim_matrix, 0.)
return 1. - sim_matrix
def get_match(cluster_labels):
cluster_dict = dict()
cluster = list()
for i, l in enumerate(cluster_labels):
if l in list(cluster_dict.keys()):
cluster_dict[l].append(i)
else:
cluster_dict[l] = [i]
for idx in cluster_dict:
cluster.append(cluster_dict[idx])
return cluster
def get_cid_tid(cluster_labels, cid_tids):
cluster = list()
for labels in cluster_labels:
cid_tid_list = list()
for label in labels:
cid_tid_list.append(cid_tids[label])
cluster.append(cid_tid_list)
return cluster
def get_labels(cid_tid_dict, cid_tids):
#compute cost matrix between features
cost_matrix = get_sim_matrix_new(cid_tid_dict, cid_tids)
#cluster all the features
cluster1 = AgglomerativeClustering(
n_clusters=None,
distance_threshold=0.5,
affinity='precomputed',
linkage='complete')
cluster_labels1 = cluster1.fit_predict(cost_matrix)
labels = get_match(cluster_labels1)
sub_cluster = get_cid_tid(labels, cid_tids)
return labels
def sub_cluster(cid_tid_dict):
'''
cid_tid_dict: all camera_id and track_id
'''
#get all keys
cid_tids = sorted([key for key in cid_tid_dict.keys()])
#cluster all trackid
clu = get_labels(cid_tid_dict, cid_tids)
#relabel every cluster groups
new_clu = list()
for c_list in clu:
new_clu.append([cid_tids[c] for c in c_list])
cid_tid_label = dict()
for i, c_list in enumerate(new_clu):
for c in c_list:
cid_tid_label[c] = i + 1
return cid_tid_label
def distill_idfeat(mot_res):
qualities_list = mot_res["qualities"]
feature_list = mot_res["features"]
rects = mot_res["rects"]
qualities_new = []
feature_new = []
#filter rect less than 100*20
for idx, rect in enumerate(rects):
conf, xmin, ymin, xmax, ymax = rect[0]
if (xmax - xmin) * (ymax - ymin) and (xmax > xmin) > 2000:
qualities_new.append(qualities_list[idx])
feature_new.append(feature_list[idx])
#take all features if available rect is less than 2
if len(qualities_new) < 2:
qualities_new = qualities_list
feature_new = feature_list
#if available frames number is more than 200, take one frame data per 20 frames
skipf = 1
if len(qualities_new) > 20:
skipf = 2
quality_skip = np.array(qualities_new[::skipf])
feature_skip = np.array(feature_new[::skipf])
#sort features with image qualities, take the most trustworth features
topk_argq = np.argsort(quality_skip)[::-1]
if (quality_skip > 0.6).sum() > 1:
topk_feat = feature_skip[topk_argq[quality_skip > 0.6]]
else:
topk_feat = feature_skip[topk_argq]
#get final features by mean or cluster, at most take five
mean_feat = np.mean(topk_feat[:5], axis=0)
return mean_feat
def res2dict(multi_res):
cid_tid_dict = {}
for cid, c_res in enumerate(multi_res):
for tid, res in c_res.items():
key = "c" + str(cid) + "_t" + str(tid)
if key not in cid_tid_dict:
cid_tid_dict[key] = res
cid_tid_dict[key]['mean_feat'] = distill_idfeat(res)
return cid_tid_dict
def mtmct_process(multi_res, captures, mtmct_vis=True, output_dir="output"):
cid_tid_dict = res2dict(multi_res)
map_tid = sub_cluster(cid_tid_dict)
if not os.path.exists(output_dir):
os.mkdir(output_dir)
pred_mtmct_file = os.path.join(output_dir, 'mtmct_result.txt')
gen_restxt(pred_mtmct_file, map_tid, cid_tid_dict)
if mtmct_vis:
camera_results, cid_tid_fid_res = get_mtmct_matching_results(
pred_mtmct_file)
save_mtmct_vis_results(camera_results, captures, output_dir=output_dir)