-
Notifications
You must be signed in to change notification settings - Fork 0
/
recognizer.py
150 lines (117 loc) · 4.65 KB
/
recognizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# CODE THAT USES THE PRETRAINED CNN MODEL FOR GESTURE RECOGNITION
import cv2
import imutils
import numpy as np
from sklearn.metrics import pairwise
import os
from keras.datasets import mnist
from keras.models import Sequential
from keras.models import model_from_json
from keras.layers import Dense
from keras.layers import Dropout
from keras.utils import np_utils
import glob
bg = None
global loaded_model
# Function - To find the running average over the background
def run_avg(image, accumWeight):
global bg
if bg is None:
bg = image.copy().astype("float")
return
cv2.accumulateWeighted(image, bg, accumWeight)
# Function - To segment the region of hand in the image
def segment(image, threshold=30):
global bg
# find the absolute difference between background and current frame
diff = cv2.absdiff(bg.astype("uint8"), image)
cv2.imshow("diff = grey - bg",diff)
cv2.imshow("grey",image)
# threshold the diff image so that we get the foreground #ret,contours,hierachy (_, cnts, _)
thresholded = cv2.threshold(diff, threshold, 255, cv2.THRESH_BINARY)[1]
(cnts,hierachy) = cv2.findContours(thresholded.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if len(cnts) == 0:
return
else:
segmented = max(cnts, key=cv2.contourArea)
return (thresholded, segmented)
# Function - here's where the main recognition work happens
def count(thresholded, segmented):
thresholded = cv2.resize(thresholded,(50,50))
thresholded = thresholded.reshape(1,-1).astype('float32')
thresholded = thresholded / 255
prob = loaded_model.predict_classes(thresholded)
return prob
# Main function
if __name__ == "__main__":
# load the structure of the model
json_file = open('F:/trainedModel-5.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)
# load weights into new model
loaded_model.load_weights("F:/modelWeights-5.h5")
print("\n\n\n\nLoaded model from disk\n\n\n\n")
loaded_model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
accumWeight = 0.5
# get the reference to the webcam
camera = cv2.VideoCapture(0)
# region of interest (ROI) coordinates
top, right, bottom, left = 10, 350, 225, 590
# initialize num of frames
num_frames = 0
# calibration indicator
calibrated = False
# keep looping, until interrupted
while(True):
# get the current frame
(grabbed, frame) = camera.read()
# resize the frame
frame = imutils.resize(frame, width=700)
# flip the frame so that it is not the mirror view
frame = cv2.flip(frame, 1)
# clone the frame
clone = frame.copy()
# get the height and width of the frame
(height, width) = frame.shape[:2]
# get the ROI
roi = frame[top:bottom, right:left]
# convert the roi to grayscale and blur it
gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (7, 7), 0)
# to get the background, keep looking till a threshold is reached
# so that our weighted average model gets calibrated
if num_frames < 30:
run_avg(gray, accumWeight)
if num_frames == 1:
print (">>>Please wait! Program is calibrating the background...")
elif num_frames == 29:
print (">>>Calibration successfull. ...")
else:
# segment the hand region
hand = segment(gray)
# check whether hand region is segmented
if hand is not None:
(thresholded, segmented) = hand
# draw the segmented region and display the frame
cv2.drawContours(clone, [segmented + (right, top)], -1, (0, 0, 255))
# count the number of fingers
fingers = count(thresholded, segmented)
print(fingers)
cv2.putText(clone, str(fingers), (200, 45), cv2.FONT_HERSHEY_DUPLEX, 1, (255,0,255), 2)
# show the thresholded image
cv2.imshow("Thesholded", thresholded)
# draw the segmented hand
cv2.rectangle(clone, (left, top), (right, bottom), (0,255,0), 2)
# increment the number of frames
num_frames += 1
# display the frame with segmented hand
cv2.imshow("Video Feed", clone)
# observe the keypress by the user
keypress = cv2.waitKey(1) & 0xFF
# if the user has pressed "q", then stop looping
if keypress == ord("q"):
break
# free up memory
camera.release()
cv2.destroyAllWindows()