-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
statHelpers.h
276 lines (206 loc) · 7.2 KB
/
statHelpers.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
#pragma once
//
// FILE: statHelpers.h
// AUTHOR: Rob Tillaart
// VERSION: 0.2.0
// PURPOSE: Arduino library with a number of statistic helper functions.
// DATE: 2020-07-01
// URL: https://github.com/RobTillaart/statHelpers
#include "Arduino.h"
#define STATHELPERS_LIB_VERSION (F("0.2.0"))
///////////////////////////////////////////////////////////////////////////
//
// PERMUTATIONS
//
uint32_t permutations(uint8_t n, uint8_t k);
uint64_t permutations64(uint8_t n, uint8_t k);
// can be optimized similar to dfactorial
double dpermutations(uint8_t n, uint8_t k);
/*
http://wordaligned.org/articles/next-permutation snippet
As an example consider finding the next permutation of:
8342666411
The longest monotonically decreasing tail is 666411, and the corresponding head is 8342.
8342 666411
666411 is, by definition, reverse-ordered, and cannot be increased by permuting its elements.
To find the next permutation, we must increase the head; a matter of finding the smallest tail
element larger than the head’s final 2.
8342 666411
Walking back from the end of tail, the first element greater than 2 is 4.
8342 666411
Swap the 2 and the 4
8344 666211
Since head has increased, we now have a greater permutation. To reduce to the next permutation,
we reverse tail, putting it into increasing order.
8344 112666
Join the head and tail back together. The permutation one greater than 8342666411 is 8344112666.
*/
// http://www.nayuki.io/page/next-lexicographical-permutation-algorithm
// b = nextPermutation<char>(array, 100);
template <typename T>
bool nextPermutation(T * array, uint16_t size)
{
// Find longest non-increasing suffix
int i = size - 1;
while (i > 0 && array[i - 1] >= array[i]) i--;
// Now i is the head index of the suffix
// Are we at the last permutation already?
if (i <= 0) return false;
// Let array[i - 1] be the pivot
// Find rightmost element that exceeds the pivot
int j = size - 1;
while (array[j] <= array[i - 1])
j--;
// Now the value array[j] will become the new pivot
// Assertion: j >= i
// Swap the pivot with j
T temp = array[i - 1];
array[i - 1] = array[j];
array[j] = temp;
// Reverse the suffix
j = size - 1;
while (i < j)
{
temp = array[i];
array[i] = array[j];
array[j] = temp;
i++;
j--;
}
return true;
}
///////////////////////////////////////////////////////////////////////////
//
// FACTORIAL
//
// exact ==> 12!
uint32_t factorial(uint8_t n);
// exact ==> 20!
uint64_t factorial64(uint8_t n);
// float (4 byte) => 34!
// double (8 byte) => 170!
double dfactorialReference(uint8_t n);
// FASTER VERSION
// does part of the math with integers.
// tested on UNO and ESP32, roughly 3x faster
// numbers differ slightly in the order of IEEE754 precision => acceptable.
// 10e-7 for 4 bit float
// 10e-16 for 8 bit double
double dfactorial(uint8_t n);
// stirling is an approximation function for factorial(n).
// it is slower but constant in time.
// float => 26!
// double => 143!
double stirling(uint8_t n);
// SEMI_FACTORIAL
// exact ==> 20!!
uint32_t semiFactorial(uint8_t n);
// exact ==> 33!!
uint64_t semiFactorial64(uint8_t n);
// float (4 byte) => 56!!
// double (8 byte) => 300!!
double dSemiFactorial(uint16_t n);
// SKIP_FACTORIAL (experimental)
// note step must be larger than 0
// note when step == 1 ==> factorial
// note when step == 2 ==> semiFactorial
uint32_t skipFactorial(uint32_t n, uint32_t skip);
uint64_t skipFactorial64(uint32_t n, uint32_t skip);
double dSkipFactorial(uint32_t n, uint32_t skip);
///////////////////////////////////////////////////////////////////////////
//
// COMBINATIONS
//
// works for n = 0..30 for all k
uint32_t combinations(uint16_t n, uint16_t k);
// works for n = 0..61 for all k
uint64_t combinations64(uint16_t n, uint16_t k);
// experimental - not exact but allows large values
// float (4 bits) works till n = 125 for all k
// double (8 bits) works till n = 1020 for all k
double dcombinations(uint16_t n, uint16_t k);
// recursive (mind your stack and time)
// works for n = 0..30 for all k
// educational purpose
uint32_t rcombinations(uint16_t n, uint16_t k);
// recursive
// works for n = 0..61 for all k
// educational purpose
uint64_t rcombinations64(uint16_t n, uint16_t k);
// very slow double recursive way by means of Pascals triangle.
// works for n = 0..30 for all k (but takes a lot of time)
// educational purpose
uint32_t combPascal(uint16_t n, uint16_t k);
/////////////////////////////////////////////////
//
// EXPERIMENTAL
//
// BIG SECTION
//
// keep track of exponent myself in 32 bit unsigned integer
// - can be extended to a 64 bit integer
// however it already takes hours to calculate with 32 bits
/*
UNO
n n! millis() from earlier version
-----------------------------------------
1 1.00000e0 0
10 3.62880e6 1
100 9.33262e157 7
1000 4.02386e2567 105
2000 3.31627e5735 231
4000 1.82880e12673 504
8000 5.18416e27752 1086
10000 2.84625e35659 1389
16000 5.11880e60319 2330
32000 1.06550e130270 4978
100000 2.82428e456573 17201
1000000 8.26379e5565708 206421 (3.5 minutes)
10000000 an hour? too long...
ESP32 240MHz
n n! millis() from earlier version
-----------------------------------------
1 1.00000e0 0
10 3.62880e6 0
100 9.33262e157 0
1e3 4.02387e2567 8
1e4 2.84626e35659 110
1e5 2.82423e456573 1390
1e6 8.26393e5565708 16781
1e7 1.20242e65657059 196573 (3++ minutes)
1e8 1.61720e756570556 2253211
1e9 9.90463e4270738226 25410726 (7++ hrs to detect overflow! :(
1 0
10 0.6
100 1.57
1000 2.567
10000 3.5659
100000 4.56573
1000000 5.565708
10000000 6.5657059
100000000 7.56570556
// largest found - exponent is approaching max_uint32_t - 4294967296
518678058! 4.1873547e4294967283 // break condition was hit...
next one should fit too
518678059! 2.1718890e4294967292
*/
void bigFactorial(uint32_t n, double &mantissa, uint32_t &exponent);
// Should work full range for n = 518678059, k = { 0..n }
// and n > 518678059 => max k is definitely smaller ==> expect n+1 ==> k-15 at start
// performance: low. depends on k.
//
//
// for relative small k and large n (multiple orders of magnitude) one can get an estimate
// P(n,k) ~ raw = log10(n - k/2) * k;
// exponent = int(raw);
// mantissa = pow(10, raw - int(raw));
void bigPermutations(uint32_t n, uint32_t k, double &mantissa, uint32_t &exponent);
void bigCombinations(uint32_t n, uint32_t k, double &mantissa, uint32_t &exponent);
////////////////////////////////////////////////////////////
//
// EXPERIMENTAL 64 BIT
//
void bigFactorial64(uint64_t n, double &mantissa, uint64_t &exponent);
void bigPermutations64(uint64_t n, uint64_t k, double &mantissa, uint64_t &exponent);
void bigCombinations64(uint64_t n, uint64_t k, double &mantissa, uint64_t &exponent);
// -- END OF FILE --