-
Notifications
You must be signed in to change notification settings - Fork 1
/
vit-b_struct-token-pwe_ade20k_512x512.py
73 lines (68 loc) · 2.27 KB
/
vit-b_struct-token-pwe_ade20k_512x512.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
_base_ = [
'../_base_/struct_token.py',
'../_base_/datasets/ade20k.py', '../_base_/default_runtime.py',
'../_base_/schedules/schedule_160k.py'
]
model = dict(decode_head=dict(type='PointWiseExtracStructTokenHead'))
# AdamW optimizer, no weight decay for position embedding & layer norm
# in backbone
optimizer = dict(
_delete_=True,
type='AdamW',
lr=0.00001,
betas=(0.9, 0.999),
weight_decay=0.01,
paramwise_cfg=dict(
custom_keys={
'pos_embed': dict(decay_mult=0.),
'cls_token': dict(decay_mult=0.),
'norm': dict(decay_mult=0.),
'decode_head': dict(lr_mult=9.),
}))
lr_config = dict(
_delete_=True,
policy='poly',
warmup='linear',
warmup_iters=1500,
warmup_ratio=1e-6,
power=1.0,
min_lr=0.0,
by_epoch=False)
checkpoint_config = dict(by_epoch=False, interval=80000)
evaluation = dict(interval=8000, metric='mIoU', pre_eval=True)
img_norm_cfg = dict(
mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5], to_rgb=True)
crop_size = (512, 512)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', reduce_zero_label=True),
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(2048, 512),
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]
data = dict(
# By default, models are trained on 8 GPUs with 2 images per GPU
samples_per_gpu=2,
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))