-
Notifications
You must be signed in to change notification settings - Fork 1
/
vit-t_struct-token-pwe_ade20k_512x512.py
41 lines (38 loc) · 1.23 KB
/
vit-t_struct-token-pwe_ade20k_512x512.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
_base_ = [
'../_base_/struct_token.py',
'../_base_/datasets/ade20k.py', '../_base_/default_runtime.py',
'../_base_/schedules/schedule_160k.py'
]
model = dict(pretrained='pretrain/vit_tiny_p16_384.pth',
backbone=dict(embed_dims=192, num_heads=3),
decode_head=dict(type='PointWiseExtracStructTokenHead',
in_channels=192,
channels=192))
# AdamW optimizer, no weight decay for position embedding & layer norm
# in backbone
optimizer = dict(
_delete_=True,
type='AdamW',
lr=0.00002,
betas=(0.9, 0.999),
weight_decay=0.01,
paramwise_cfg=dict(
custom_keys={
'pos_embed': dict(decay_mult=0.),
'cls_token': dict(decay_mult=0.),
'norm': dict(decay_mult=0.),
'decode_head': dict(lr_mult=9.),
}))
lr_config = dict(
_delete_=True,
policy='poly',
warmup='linear',
warmup_iters=1500,
warmup_ratio=1e-6,
power=1.0,
min_lr=0.0,
by_epoch=False)
# By default, models are trained on 8 GPUs with 2 images per GPU
data = dict(samples_per_gpu=2)
checkpoint_config = dict(by_epoch=False, interval=80000)
evaluation = dict(interval=8000, metric='mIoU', pre_eval=True)