-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
Solution.java
44 lines (38 loc) · 1.86 KB
/
Solution.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
// github.com/RodneyShag
public class Solution {
public static void main(String[] args) {
double mean = 70;
double std = 10;
double result_1 = 100 * (1 - cumulative(mean, std, 80));
double result_2 = 100 * (1 - cumulative(mean, std, 60));
double result_3 = 100 * cumulative(mean, std, 60);
System.out.format("%.2f%n", result_1);
System.out.format("%.2f%n", result_2);
System.out.format("%.2f%n", result_3);
}
/* Calculates cumulative probability */
public static double cumulative(double mean, double std, double x) {
double parameter = (x - mean) / (std * Math.sqrt(2));
return (0.5) * (1 + erf(parameter));
}
/* Source: http://introcs.cs.princeton.edu/java/21function/ErrorFunction.java.html */
// fractional error in math formula less than 1.2 * 10 ^ -7.
// although subject to catastrophic cancellation when z in very close to 0
// from Chebyshev fitting formula for erf(z) from Numerical Recipes, 6.2
public static double erf(double z) {
double t = 1.0 / (1.0 + 0.5 * Math.abs(z));
// use Horner's method
double ans = 1 - t * Math.exp( -z*z - 1.26551223 +
t * ( 1.00002368 +
t * ( 0.37409196 +
t * ( 0.09678418 +
t * (-0.18628806 +
t * ( 0.27886807 +
t * (-1.13520398 +
t * ( 1.48851587 +
t * (-0.82215223 +
t * ( 0.17087277))))))))));
if (z >= 0) return ans;
else return -ans;
}
}