Video explanation - This is a difficult algorithm.
class Solution {
// Transform s into t.
// For example, if s = "abba", then t = "$#a#b#b#a#@"
// the # are interleaved to avoid even/odd-length palindromes uniformly
// $ and @ are prepended and appended to each end to avoid bounds checking
private char[] preprocess(String s) {
char[] t = new char[s.length()*2 + 3];
t[0] = '$';
t[s.length()*2 + 2] = '@';
for (int i = 0; i < s.length(); i++) {
t[2*i + 1] = '#';
t[2*i + 2] = s.charAt(i);
}
t[s.length()*2 + 1] = '#';
return t;
}
public String longestPalindrome(String s) {
char[] t = preprocess(s);
int[] p = new int[t.length];
int center = 0, right = 0;
for (int i = 1; i < t.length-1; i++) {
int mirror = 2 * center - i;
if (right > i) {
p[i] = Math.min(right - i, p[mirror]);
}
// attempt to expand palindrome centered at i
while (t[i + (1 + p[i])] == t[i - (1 + p[i])]) {
p[i]++;
}
// if palindrome centered at i expands past right,
// adjust center based on expanded palindrome.
if (i + p[i] > right) {
center = i;
right = i + p[i];
}
}
return longestPalindromicSubstring(p, s);
}
public String longestPalindromicSubstring(int[] p, String s) {
int length = 0; // length of longest palindromic substring
int center = 0; // center of longest palindromic substring
for (int i = 1; i < p.length - 1; i++) {
if (p[i] > length) {
length = p[i];
center = i;
}
}
return s.substring((center - 1 - length) / 2, (center - 1 + length) / 2);
}
}
- Time Complexity: O(n) - but difficult to prove/explain.
i
in the outer for loop moves forwardn
times. Thewhile
loop does an amortizedO(1)
amount of work. - Space Complexity: O(n)