
This is Google's cache of https://github.com/spacejam/rio/issues/11. It is a snapshot of the page as it appeared on May 30, 2020 05:57:54 GMT. The current page could have changed in
the meantime. Learn more.

Full version Text-only version View source

Tip: To quickly find your search term on this page, press Ctrl+F or ⌘-F (Mac) and use the find bar.

mem::forget(completion) unsafety? #11
 Closed goffrie opened this issue on Feb 7 · 11 comments

Assignees

No one assigned

Labels

Projects

None yet

Milestone

No milestone

Linked pull requests

Successfully merging a pull request may
close this issue.

None yet

6 participants

New issue

goffrie commented on Feb 7

It seems to me that the soundness of Completion relies on the fact that it waits for the operation to
complete in its Drop impl. But per the leakpocalypse it's safe to just forget the completion, side-
stepping that?

spacejam commented on Feb 8

Yeah. Personally, I consider mem::forget to be an incorrectly safe operation for this reason. I
think this needs to be better documented.

Owner

 1

DemiMarie-parity commented on Feb 19

This can be avoided by returning Pin<Box<Completion>> and impl !Unpin for Completion .
There should be other ways to do this as well, such as requiring a Pin<&mut Completion>
argument in various places.

goffrie commented on Feb 19

Can't you still mem::forget the box?
…

Author

DemiMarie-parity commented on Feb 21

You can :(. The only solution I can think of is for rio to own all buffers. That will be needed
anyway for preregistration, though, so it isn’t all bad.

spacejam commented on Feb 21 •

My personal feeling is that mem::forget is unlikely to be used on Completion . It's a dangerous
tool in general that I believe most people rarely rely on. Can you folks think of a realistic reason
someone may try to use it on this? I know this is not necessarily a water-tight argument, but
personally I'm not sure we should significantly reduce the usability of an API due to an issue that
you can only encounter if you do something kind of foolish to begin with. Are there cases where it
doesn't seem foolish to use mem::forget over drop ? I'm totally biased, because I understand
what the current semantics are and I'm incentivized to justify them, but things like leakopalypse
never really felt compelling as a reason to avoid relying on Drop to me.

Owneredited

twissel commented on Feb 21

For me mem::forget it's not the issue, but for example read or timeout is the issue, why do i need
to wait until read is finished (drop called)?, passing ownership to kernel is the only way i think.

None yet

https://github.com/spacejam/rio/issues/11
https://github.com/spacejam/rio/issues/11
http://support.google.com/websearch/bin/answer.py?hl=en&p=cached&answer=1687222
http://webcache.googleusercontent.com/search?q=cache:https://github.com/spacejam/rio/issues/11&strip=1&vwsrc=0
http://webcache.googleusercontent.com/search?q=cache:https://github.com/spacejam/rio/issues/11&strip=0&vwsrc=1
https://github.com/goffrie
https://github.com/Shnatsel
https://github.com/goffrie
https://github.com/stjepang
https://github.com/spacejam
https://github.com/twissel
https://github.com/DemiMarie-parity
https://github.com/goffrie
https://github.com/spacejam
https://github.com/DemiMarie-parity
https://github.com/goffrie
https://github.com/DemiMarie-parity
https://github.com/spacejam
https://github.com/twissel
https://github.com/goffrie
https://github.com/spacejam
https://github.com/DemiMarie-parity
https://github.com/goffrie
https://github.com/DemiMarie-parity
https://github.com/spacejam
https://github.com/twissel

Shnatsel commented on Apr 28

mem::forget() is a rather contrived example, but it's marked safe because you can get identical
behavior by creating a reference cycle using Rc or Arc in safe code, and that cannot be fixed
without introducing a garbage collector. And a leak caused by a reference cycle is a much more
realistic scenario, especially seeing how prevalent Arc is in async code.

 2

stjepang commented on Apr 28

I like rio's API a lot! While it is technically unsound because it can cause undefined behavior in
safe code, I don't think it needs a lot of changes to be sound.

All we need to do is require the user to open one line of unsafe code and to declare "I know what
I'm doing". Rio's constructor could be made unsafe, or some kind of getter method on Rio that
gives you its convenient API.

That way we get technical soundness and keep the convenience. Anyways... I'm thinking this is a
lot of talk for what is a trivially easy problem to solve (:

DemiMarie-parity commented on Apr 28

@stjepang why is it bad for rio to own the buffers? That allows for preregistration (a large
performance improvement).

 1

Shnatsel commented on May 6

withoutboats has published a blog post on io-uring and safe Rust wrappers for it. It discusses the
issues with API reliant on Drop running beyond the obvious safety issues and proposes some
possible solutions. https://boats.gitlab.io/blog/post/io-uring/

 1

spacejam commented 28 days ago •

boats considers mem::forget to be a more realistic issue than I do. mem::forget is unsafe in real
code, the same as a memory leak is unsafe in real code. I don't view the unsoundness of this
library to be meaningful in real systems. I view Rust's design decisions as unfortunate to allow
such bypasses of the borrow checker to become possible with leaks, but ultimately one that does
not actually mean anything for people building real systems that need to guarantee that they do
not contain leaks using LSAN anyway etc... Real systems have to use LSAN anyway because we
can't rely on Rust to prevent leaks.

Just because some things are prevented by the Rust compiler, we still have to be responsible
about engineering using Rust, and use these kinds of tools for anything that matters. Code is
never sufficient. This is why I don't consider this form of unsoundness an issue - we have to use
these tools that will catch issues anyway, and when we use them, meaningful unsoundness will
almost always become clear quickly.

Owneredited

 spacejam closed this 28 days ago

Repository owner locked and limited conversation to collaborators 28 days ago

https://github.com/Shnatsel
https://github.com/stjepang
https://github.com/DemiMarie-parity
https://github.com/stjepang
https://github.com/Shnatsel
https://boats.gitlab.io/blog/post/io-uring/
https://github.com/spacejam
https://github.com/spacejam/sled/blob/df81d300c6f3cc8c1ba29ca81d0cf9620641e460/scripts/sanitizers.sh
https://github.com/spacejam
https://github.com/spacejam
https://github.com/Shnatsel
https://github.com/stjepang
https://github.com/DemiMarie-parity
https://github.com/Shnatsel
https://github.com/spacejam

