Skip to content

Chat with your PDF files for free, using Langchain, Groq, ChromaDB, and Jina AI embeddings.

License

Notifications You must be signed in to change notification settings

S4mpl3r/chat-with-pdf

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Chat With PDFs

Chat with your PDF files for free, using Langchain, Groq, Chroma vector store, and Jina AI embeddings. This repository contains a simple Python implementation of the RAG (Retrieval-Augmented-Generation) system. The RAG model is used to retrieve relevant chunks of the user PDF file based on user queries and provide informative responses.

Installation

Follow these steps:

  1. Clone the repository
    git clone https://github.com/S4mpl3r/chat-with-pdf.git
    
  2. Create a virtual environment and activate it (optional, but highly recommended).
    python -m venv .venv
    Windows: .venv\Scripts\activate
    Linux: source .venv/bin/activate
    
  3. Install required packages:
    python -m pip install -r requirements.txt
    
  4. Create a .env file in the root of the project and populate it with the following keys. You'll need to obtain your api keys:
    JINA_API_KEY=<YOUR KEY>
    GROQ_API_KEY=<YOUR KEY>
    HF_TOKEN=<YOUR TOKEN>
    HF_HOME=<PATH TO STORE HUGGINGFACE MODEL>
    
  5. Run the program:
    python main.py
    

Configuration

You can customize the behavior of the system by modifying the constants and parameters in the main.py file:

  • EMBED_MODEL_NAME: Specify the name of the Jina embedding model to be used.
  • LLM_NAME: Specify the name of the language model (Refer to Groq for the list of available models).
  • LLM_TEMPERATURE: Set the temperature parameter for the language model.
  • CHUNK_SIZE: Specify the maximum chunk size allowed by the embedding model.
  • DOCUMENT_DIR: Specify the directory where PDF documents are stored.
  • VECTOR_STORE_DIR: Specify the directory where vector embeddings are stored.
  • COLLECTION_NAME: Specify the name of the collection for the chroma vector store.

Resources

Kudos to the amazing libraries and services listed below:

License

MIT