-
Notifications
You must be signed in to change notification settings - Fork 0
/
run.py
320 lines (305 loc) · 17.2 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import argparse
import os
import time
import torch.optim
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, \
precision_recall_curve, auc, cohen_kappa_score
from models.dataset import *
from models_new.architect import *
from models_new.model import *
from utils.icd_rel import *
from utils.utils import check_path, export_config, bool_flag
def eval_metric(eval_set, model):
model.eval()
with torch.no_grad():
y_true = np.array([])
y_pred = np.array([])
y_score = np.array([])
for i, data in enumerate(eval_set):
labels, ehr, mask, txt, _, lengths, time_step, code_mask = data
logits = model(ehr, mask, lengths, time_step)
scores = torch.softmax(logits, dim=-1)
scores = scores.data.cpu().numpy()
labels = labels.data.cpu().numpy()
score = scores[:, 1]
pred = scores.argmax(1)
y_true = np.concatenate((y_true, labels))
y_pred = np.concatenate((y_pred, pred))
y_score = np.concatenate((y_score, score))
accuary = accuracy_score(y_true, y_pred)
precision = precision_score(y_true, y_pred)
recall = recall_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred)
roc_auc = roc_auc_score(y_true, y_score)
lr_precision, lr_recall, _ = precision_recall_curve(y_true, y_score)
pr_auc = auc(lr_recall, lr_precision)
kappa = cohen_kappa_score(y_true, y_pred)
return accuary, precision, recall, f1, roc_auc, pr_auc, kappa
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--cuda', default=True, type=bool_flag, nargs='?', const=True, help='use GPU')
parser.add_argument('--seed', default=0, type=int, help='seed')
parser.add_argument('-bs', '--batch_size', default=64, type=int)
parser.add_argument('-me', '--max_epochs_before_stop', default=15, type=int)
parser.add_argument('--d_model', default=256, type=int, help='dimension of hidden layers')
parser.add_argument('--dropout', default=0.1, type=float, help='dropout rate of hidden layers')
parser.add_argument('--dropout_emb', default=0.1, type=float, help='dropout rate of embedding layers')
parser.add_argument('--num_layers', default=1, type=int, help='number of transformer layers of EHR encoder')
parser.add_argument('--num_heads', default=4, type=int, help='number of attention heads')
parser.add_argument('--max_len', default=50, type=int, help='max visits of EHR')
parser.add_argument('--max_num_codes', default=20, type=int, help='max number of ICD codes in each visit')
parser.add_argument('--max_num_blks', default=100, type=int, help='max number of blocks in each visit')
parser.add_argument('--blk_emb_path', default='./data/processed/block_embedding.npy',
help='embedding path of blocks')
parser.add_argument('--target_disease', default='Heart_failure', choices=['Heart_failure', 'COPD', 'Kidney', 'Dementia', 'Amnesia'])
parser.add_argument('--target_att_heads', default=4, type=int, help='target disease attention heads number')
parser.add_argument('--mem_size', default=15, type=int, help='memory size')
parser.add_argument('--mem_update_size', default=15, type=int, help='memory update size')
parser.add_argument('-lr', '--learning_rate', default=0.0001, type=float, help='learning rate')
parser.add_argument('-lrm', '--learning_rate_min', type=float, default=0.00003, help='min learning rate')
parser.add_argument('-alr', '--arch_learning_rate', default=0.00001, type=float, help='learning rate')
parser.add_argument('--max_grad_norm', default=1.0, type=float, help='max grad norm (0 to disable)')
parser.add_argument('--wdecay', default=0.0001, type=float)
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--steps', default=2, type=int)
parser.add_argument('--clip', default=1.0, type=float, help='max grad norm (0 to disable)')
parser.add_argument('--n_epochs', default=50, type=int)
parser.add_argument('--log_interval', default=20, type=int)
parser.add_argument('--mode', default='train', choices=['train', 'pred', 'study'], help='run training or evaluation')
parser.add_argument('--save_dir', default='./saved_models/', help='models output directory')
args = parser.parse_args()
if args.mode == 'train':
train(args)
elif args.mode == 'pred':
pred(args)
else:
raise ValueError('Invalid mode')
def train(args):
print(args)
# random.seed(args.seed)
# np.random.seed(args.seed)
# torch.manual_seed(args.seed)
# if torch.cuda.is_available() and args.cuda:
# torch.cuda.manual_seed(args.seed)
model_path_search = os.path.join(args.save_dir, 'models.pt')
model_searched, old_args = torch.load(model_path_search)
config_path = os.path.join(args.save_dir, 'config1.json')
model_path = os.path.join(args.save_dir, 'models1.pt')
log_path = os.path.join(args.save_dir, 'log1.csv')
export_config(args, config_path)
check_path(model_path)
with open(log_path, 'w') as fout:
fout.write('step,train_auc,dev_auc,test_auc\n')
blk_emb = np.load(old_args.blk_emb_path)
blk_pad_id = len(blk_emb) - 1
icd2cui = pickle.load(open('./data/semmed/icd2cui.pickle', 'rb'))
if old_args.target_disease == 'Heart_failure':
code2id = pickle.load(open('./data/hf/hf_code2idx_new.pickle', 'rb'))
pad_id = len(code2id)
data_path = './data/hf/hf'
emb_path = './data/processed/heart_failure.npy'
elif old_args.target_disease == 'COPD':
code2id = pickle.load(open('./data/copd/copd_code2idx_new.pickle', 'rb'))
pad_id = len(code2id)
data_path = './data/copd/copd'
emb_path = './data/processed/COPD.npy'
elif old_args.target_disease == 'Kidney':
code2id = pickle.load(open('./data/kidney/kidney_code2idx_new.pickle', 'rb'))
pad_id = len(code2id)
data_path = './data/kidney/kidney'
emb_path = './data/processed/kidney_disease.npy'
elif old_args.target_disease == 'Dementia':
code2id = pickle.load(open('./data/dementia/dementia_code2idx_new.pickle', 'rb'))
pad_id = len(code2id)
data_path = './data/dementia/dementia'
emb_path = './data/processed/dementia.npy'
elif old_args.target_disease == 'Amnesia':
code2id = pickle.load(open('./data/amnesia/amnesia_code2idx_new.pickle', 'rb'))
pad_id = len(code2id)
data_path = './data/amnesia/amnesia'
emb_path = './data/processed/amnesia.npy'
else:
raise ValueError('Invalid disease')
device = torch.device("cuda:0" if torch.cuda.is_available() and args.cuda else "cpu")
train_dataset = MyDataset(data_path + '_training_new.pickle', data_path + '_training_txt.pickle',
args.max_len, args.max_num_codes, args.max_num_blks, pad_id, blk_pad_id, device)
dev_dataset = MyDataset(data_path + '_validation_new.pickle', data_path + '_validation_txt.pickle', args.max_len,
args.max_num_codes, args.max_num_blks, pad_id, blk_pad_id, device)
test_dataset = MyDataset(data_path + '_testing_new.pickle', data_path + '_testing_txt.pickle', args.max_len,
args.max_num_codes, args.max_num_blks, pad_id, blk_pad_id, device)
train_dataloader = DataLoader(train_dataset, args.batch_size, shuffle=True, collate_fn=collate_fn, drop_last=True)
dev_dataloader = DataLoader(dev_dataset, args.batch_size, shuffle=True, collate_fn=collate_fn)
test_dataloader = DataLoader(test_dataset, args.batch_size, shuffle=False, collate_fn=collate_fn)
loss_func = nn.CrossEntropyLoss(reduction='mean')
genotype = model_searched.genotype()
print(genotype)
model = Network(pad_id + 1, old_args.d_model, old_args.steps, loss_func, genotype)
model.to(device)
optim = torch.optim.Adam(
model.parameters(),
args.learning_rate,
weight_decay=args.wdecay
)
# scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
# optim, 50, eta_min=args.learning_rate_min)
print('parameters:')
for name, param in model.named_parameters():
if param.requires_grad:
print('\t{:45}\ttrainable\t{}'.format(name, param.size()))
else:
print('\t{:45}\tfixed\t{}'.format(name, param.size()))
num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('\ttotal:', num_params)
print()
print('-' * 71)
global_step, best_dev_epoch = 0, 0
best_dev_auc, final_test_auc, total_loss = 0.0, 0.0, 0.0
model.train()
for epoch_id in range(args.n_epochs):
lr = optim.param_groups[0]['lr']
print('epoch: {:5} '.format(epoch_id))
print('lr: {:5} '.format(lr))
model.train()
start_time = time.time()
for i, data in enumerate(train_dataloader):
labels, ehr, mask, txt, _, lengths, time_step, code_mask = data
optim.zero_grad()
out = model(ehr, mask, lengths, time_step)
loss = loss_func(out, labels)
loss.backward()
total_loss += (loss.item() / labels.size(0)) * args.batch_size
if args.max_grad_norm > 0:
nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optim.step()
if (global_step + 1) % args.log_interval == 0:
total_loss /= args.log_interval
ms_per_batch = 1000 * (time.time() - start_time) / args.log_interval
print('| step {:5} | loss {:7.4f} | ms/batch {:7.2f} |'.format(global_step,
total_loss,
ms_per_batch))
total_loss = 0.0
start_time = time.time()
global_step += 1
# scheduler.step()
model.eval()
train_acc, tr_precision, tr_recall, tr_f1, tr_roc_auc, tr_pr_auc, tr_kappa = eval_metric(train_dataloader, model)
dev_acc, d_precision, d_recall, d_f1, d_roc_auc, d_pr_auc, d_kappa = eval_metric(dev_dataloader, model)
test_acc, t_precision, t_recall, t_f1, t_roc_auc, t_pr_auc, t_kappa = eval_metric(test_dataloader, model)
print('-' * 71)
print('| step {:5} | train_acc {:7.4f} | dev_acc {:7.4f} | test_acc {:7.4f} '.format(global_step,
train_acc,
dev_acc,
test_acc))
print(
'| step {:5} | train_precision {:7.4f} | dev_precision {:7.4f} | test_precision {:7.4f} '.format(
global_step,
tr_precision,
d_precision,
t_precision))
print('| step {:5} | train_recall {:7.4f} | dev_recall {:7.4f} | test_recall {:7.4f} '.format(
global_step,
tr_recall,
d_recall,
t_recall))
print('| step {:5} | train_f1 {:7.4f} | dev_f1 {:7.4f} | test_f1 {:7.4f} '.format(global_step,
tr_f1,
d_f1,
t_f1))
print('| step {:5} | train_auc {:7.4f} | dev_auc {:7.4f} | test_auc {:7.4f} '.format(global_step,
tr_roc_auc,
d_roc_auc,
t_roc_auc))
print('| step {:5} | train_pr {:7.4f} | dev_pr {:7.4f} | test_pr {:7.4f} '.format(global_step,
tr_pr_auc,
d_pr_auc,
t_pr_auc))
print('-' * 71)
if d_f1 >= best_dev_auc:
best_dev_auc = d_f1
final_test_auc = t_f1
best_dev_epoch = epoch_id
torch.save([model, args], model_path)
with open(log_path, 'a') as fout:
fout.write('{},{},{},{}\n'.format(global_step, tr_pr_auc, d_pr_auc, t_pr_auc))
print(f'models saved to {model_path}')
if epoch_id - best_dev_epoch >= args.max_epochs_before_stop:
break
print()
print('training ends in {} steps'.format(global_step))
print('best dev auc: {:.4f} (at epoch {})'.format(best_dev_auc, best_dev_epoch))
print('final test auc: {:.4f}'.format(final_test_auc))
print()
def pred(args):
model_path = os.path.join(args.save_dir, 'models1.pt')
model, old_args = torch.load(model_path)
device = torch.device("cuda:0" if torch.cuda.is_available() and args.cuda else "cpu")
model.to(device)
model.eval()
blk_emb = np.load(old_args.blk_emb_path)
blk_pad_id = len(blk_emb) - 1
if old_args.target_disease == 'Heart_failure':
code2id = pickle.load(open('./data/hf/hf_code2idx_new.pickle', 'rb'))
id2code = {int(v): k for k, v in code2id.items()}
code2topic = pickle.load(open('./data/hf/hf_code2topic.pickle', 'rb'))
pad_id = len(code2id)
data_path = './data/hf/hf'
elif old_args.target_disease == 'COPD':
code2id = pickle.load(open('./data/copd/copd_code2idx_new.pickle', 'rb'))
id2code = {int(v): k for k, v in code2id.items()}
code2topic = pickle.load(open('./data/copd/copd_code2topic.pickle', 'rb'))
pad_id = len(code2id)
data_path = './data/copd/copd'
elif old_args.target_disease == 'Kidney':
code2id = pickle.load(open('./data/kidney/kidney_code2idx_new.pickle', 'rb'))
id2code = {int(v): k for k, v in code2id.items()}
code2topic = pickle.load(open('./data/kidney/kidney_code2topic.pickle', 'rb'))
pad_id = len(code2id)
data_path = './data/kidney/kidney'
elif old_args.target_disease == 'Amnesia':
code2id = pickle.load(open('./data/amnesia/amnesia_code2idx_new.pickle', 'rb'))
id2code = {int(v): k for k, v in code2id.items()}
code2topic = pickle.load(open('./data/amnesia/amnesia_code2topic.pickle', 'rb'))
pad_id = len(code2id)
data_path = './data/amnesia/amnesia'
elif old_args.target_disease == 'Dementia':
code2id = pickle.load(open('./data/dementia/dementia_code2idx_new.pickle', 'rb'))
id2code = {int(v): k for k, v in code2id.items()}
code2topic = pickle.load(open('./data/dementia/dementia_code2topic.pickle', 'rb'))
pad_id = len(code2id)
data_path = './data/dementia/dementia'
else:
raise ValueError('Invalid disease')
dev_dataset = MyDataset(data_path + '_validation_new.pickle', data_path + '_validation_txt.pickle',
old_args.max_len, old_args.max_num_codes, old_args.max_num_blks, pad_id, blk_pad_id, device)
test_dataset = MyDataset(data_path + '_testing_new.pickle', data_path + '_testing_txt.pickle', old_args.max_len,
old_args.max_num_codes, old_args.max_num_blks, pad_id, blk_pad_id, device)
dev_dataloader = DataLoader(dev_dataset, args.batch_size, shuffle=False, collate_fn=collate_fn)
test_dataloader = DataLoader(test_dataset, args.batch_size, shuffle=False, collate_fn=collate_fn)
# dev_acc, d_precision, d_recall, d_f1, d_roc_auc, d_pr_auc = eval_metric(dev_dataloader, models)
test_acc, t_precision, t_recall, t_f1, t_roc_auc, t_pr_auc, t_kappa = eval_metric(test_dataloader, model)
with torch.no_grad():
y_true = np.array([])
y_pred = np.array([])
y_score = np.array([])
for i, data in enumerate(test_dataloader):
labels, ehr, mask, txt, mask_txt, lengths, time_step, code_mask = data
logits = model(ehr, mask, lengths, time_step)
scores = torch.softmax(logits, dim=-1)
scores = scores.data.cpu().numpy()
labels = labels.data.cpu().numpy()
score = scores[:, 1]
pred = scores.argmax(1)
y_true = np.concatenate((y_true, labels))
y_pred = np.concatenate((y_pred, pred))
y_score = np.concatenate((y_score, score))
log_path = os.path.join(args.save_dir, 'result1.csv')
with open(log_path, 'w') as fout:
fout.write('test_auc,test_f1,test_pre,test_recall,test_pr_auc,test_kappa\n')
fout.write(
'{},{},{},{},{},{}\n'.format(t_roc_auc, t_f1, t_precision, t_recall, t_pr_auc, t_kappa))
with open(os.path.join(args.save_dir, 'prediction1.csv'), 'w') as fout2:
fout2.write('prediciton,score,label\n')
for i in range(len(y_true)):
fout2.write('{},{},{}\n'.format(y_pred[i], y_score[i], y_true[i]))
if __name__ == '__main__':
main()