Skip to content

Latest commit

 

History

History
51 lines (34 loc) · 1.99 KB

GETTING_STARTED.md

File metadata and controls

51 lines (34 loc) · 1.99 KB

Getting started with VMFormer

Data Preparation

Foreground Dataset

Background Dataset

Composited Testing Set

The way the data are composited following RVM practice.

Training

We conducted all experiments on 8xA6000 GPUs. To train VMFormer with 8 GPUs, run:

GPUS_PER_NODE=8 ./tools/run_dist_launch.sh 8 ./configs/mv3_vmformer.sh

Inference & Evaluation

Evaluating VMFormer on the low-resoution composited testing set:

CUDA_VISIBLE_DEVICES=0 python inference_vm.py --model_path path/to/model_weights --masks --num_frames 20 --img_path path/to/vmformer_512x288_public --query_temporal weight_sum --fpn_temporal

Evaluating VMFormer on the high-resoution composited testing set:

CUDA_VISIBLE_DEVICES=0 python inference_vm.py --model_path path/to/model_weights --masks --num_frames 5 --img_path path/to/vmformer_1920x1080_public --query_temporal weight_sum --fpn_temporal

Evaluating VMFormer on the RVM low-resoution testing set:

CUDA_VISIBLE_DEVICES=0 python inference_rvm.py --model_path path/to/model_weights --masks --num_frames 20 --img_path path/to/rvm_512x288_public --query_temporal weight_sum --fpn_temporal

Evaluating VMFormer on the RVM high-resoution testing set:

CUDA_VISIBLE_DEVICES=0 python inference_rvm.py --model_path path/to/model_weights --masks --num_frames 20 --img_path path/to/rvm_1920x1080_public --query_temporal weight_sum --fpn_temporal