forked from anaderi/lhcb_trigger_ml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
55 lines (45 loc) · 1.65 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from setuptools import setup
import codecs
with codecs.open('README.rst', encoding='utf-8') as readme_file:
long_description = readme_file.read()
setup(
name="hep_ml",
version="0.1.5",
description="Machine Learning for High Energy Physics",
long_description=long_description,
url='https://github.com/anaderi/lhcb_trigger_ml',
# Author details
author='Alex Rogozhnikov',
author_email='axelr@yandex-team.ru',
# Choose your license
license='MIT',
packages=['hep_ml'],
package_dir={'hep_ml': 'hep_ml'},
classifiers=[
# Indicate who your project is intended for
'Intended Audience :: CERN, LHC, LHCb experiment, HEP, particle physics',
'Topic :: YDF :: Cern Tools',
# Pick your license as you wish (should match "license" above)
'License :: MIT License',
# Specify the Python versions you support here. In particular, ensure
# that you indicate whether you support Python 2, Python 3 or both.
'Programming Language :: Python :: 2.7',
],
# What does your project relate to?
keywords='machine learning, supervised learning, '
'uncorrelated methods of machine learning, high energy physics, particle physics',
# List run-time dependencies here. These will be installed by pip when your project is installed.
install_requires = [
'ipython[all] >= 2.1.0',
'pyzmq >= 14.3.0',
'matplotlib >= 1.4',
'rootpy >= 0.7.1',
'root_numpy >= 3.3.0',
'pandas >= 0.14.0',
'scikit-learn >= 0.15',
'scipy >= 0.14.0',
'numpy >= 1.8.1',
'jinja2 >= 2.7.3',
'six',
],
)