-
Notifications
You must be signed in to change notification settings - Fork 0
/
README.qmd
247 lines (172 loc) · 13.1 KB
/
README.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
---
title: "🐷SUS-Chat: Instruction tuning done right"
format: gfm
execute:
freeze: true
enabled: false
jupyter:
kernelspec:
display_name: Python 3.10 (dl)
language: python
name: dl
---
<p align="left">
<a href="README_CN.md">中文</a>  |  English 
</p>
<br><br>
<div align="center">
<p align="center">
<img src="https://github.com/SUSTech-IDEA/SUS-Chat/raw/main/assets/sustech.svg?sanitize=true" width="200px"> <img src="https://github.com/SUSTech-IDEA/SUS-Chat/raw/main/assets/ccnl.png?sanitize=true" width="200px">
</p>
<div style="display: inline-block;">
<a rel="noopener nofollow" href="https://github.com/SUSTech-IDEA/SUS-Chat/issues">
<img src="https://img.shields.io/github/issues/SUSTech-IDEA/SUS-Chat?logo=github" style="margin: 0 0;">
</a>
</div>
<div style="display: inline-block;">
<a href="https://huggingface.co/SUSTech">
<img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-SUSTech-blue" style="margin: 0 0;">
</a>
</div>
<div style="display: inline-block;">
<a rel="noopener nofollow" href="https://www.modelscope.cn/organization/sustc/">
<img src="https://img.shields.io/badge/🤖ModelScope-sustc-blue" style="margin: 0 0;">
</a>
</div>
<a href="https://wisemodel.cn/organization/SUSTech">
<img src="https://img.shields.io/badge/WiseModel-SUSTech-blue">
</a>
<div style="display: inline-block;">
<a rel="noopener nofollow" href="https://github.com/SUSTech-IDEA/SUS-Chat/blob/main/LICENSE">
<img src="https://img.shields.io/badge/Code_License-Apache_2.0-lightblue" style="margin: 0 0;">
</a>
</div>
<div style="display: inline-block;">
<a rel="noopener nofollow" href="https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt">
<img src="https://img.shields.io/badge/Model_License-Model_Agreement-lightblue" style="margin: 0 0;">
</a>
</div>
<div style="display: inline-block;">
<a rel="noopener nofollow" href="mailto:oss@data.sustech.edu.cn">
<img src="https://img.shields.io/badge/✉️-data@sustech.edu.cn-FFE01B" style="margin: 0 0;">
</a>
</div>
</div>
# News
- 2024-1-04: 🔥 `cloudyu` created a series of top ranked [MOE](https://huggingface.co/cloudyu/Yi-34Bx2-MoE-60B) based on our model
- 2023-12-09: 🔥 `Tigerbot` variant has been [deleted](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/438), `SUS-Chat-34B` is now the the top-ranked LLaMA model and the top-ranked chat model.
- 2023-12-07: SUS-Chat-34B is now available on [WiseModel🧠](https://wisemodel.cn/model/SUSTech/SUS-Chat-34B).
- 2023-12-06: Try [SUS-Chat-34B chat-ui](https://huggingface.co/spaces/SUSTech/SUS-Chat-34B).
- 2023-12-05: SUS-Chat-34B is now available on [ModelScope🤖](https://www.modelscope.cn/models/SUSTC/SUS-Chat-34B/summary)
- 2023-12-05: SUS-Chat-34B is ranked 2nd in [Open LLM leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) and surpassed all models under 70B.
- 2023-12-01: SUS-Chat-34B is now available on [HuggingFace🤗](https://huggingface.co/SUSTech/SUS-Chat-34B).
# Introduction
![DALL·E 2023-12-01 11.03.28 - An imposing, majestic wild boar combined with elements of a futuristic transformer robot. The boar itself should be intricately blended with these tra](https://hackmd.io/_uploads/HJlDtzhBa.png){#fig-sus}
**SUS-Chat-34B** is a 34B bilingual Chinese-English dialogue model, jointly released by the **[Southern University of Science and Technology](https://huggingface.co/SUSTech)** and **[IDEA-CCNL](https://huggingface.co/IDEA-CCNL)**. This model is based on [`01-ai/Yi-34B`](https://huggingface.co/01-ai/Yi-34B) and has been fine-tuned on millions of high-quality, multilingual instruction data. While maintaining the strong language capabilities of the base model, the SUS-Chat-34B model has improved the model's response to human instructions through high-quality instruction fine-tuning and excels at imitating human thought processes through chains of thought. It introduces inter-instruction attention sharing in long texts, expanding the window size from 4K to 8K, significantly enhancing the usability of multi-turn dialogues.
It has surpassed all models of the same size in almost all benchmark tests and is better suited to meet the practical needs of complex multilingual tasks. Compared to larger models, SUS-Chat-34B remains highly competitive and has achieved state-of-the-art performance in our comprehensive evaluations.
SUS-Chat-34B model has the following highlights:
1. Large-scale complex instruction following data: Trained with 1.4 billion tokens of high-quality complex instruction data, covering Chinese and English, multi-turn dialogues, mathematics, reasoning, and various other types of instruction data;
2. Strong performance in general tasks: The SUS-Chat-34B model excels in numerous mainstream Chinese and English tasks, surpassing other open-source instruction fine-tuned models of the same parameter scale. It also competes well against models with larger parameter scales;
3. Longer context window and excellent multi-turn dialogue capabilities: Currently, SUS-Chat-34B supports an 8K context window, and is trained with a large amount of multi-turn instruction and single-multi-turn mixed data, demonstrating remarkable capabilities in long-text dialogue information focus and instruction follow-up.
SUS-Chat powerfully demonstrates that through the right instruction fine-tuning, academic institutions can achieve better performance without increasing model parameters, using open-source datasets and models. This bridges the gap between academia and industry in large language models and opens new possibilities for collaboration between academic and industrial sectors.
# Performance
To better evaluate the performance of the SUS-Chat-34B model, we conducted assessments across multiple benchmark tests and have open-sourced the evaluation framework [TLEM](https://huggingface.co/spaces/SUSTech/tlem) to facilitate replication and comparison by other researchers.
In TLEM, we utilized various benchmark tests including MMLU, CMMLU, C-Eval, BBH, GSM-8K, and MATH, to measure the model's knowledge and thinking capabilities. In these metrics, the SUS-Chat-34B model achieved state-of-the-art performance. Additionally, we incorporated [lm-eval](https://github.com/EleutherAI/lm-evaluation-harness) to test SUS-Chat and similar models on winogrande, hellaswag, arc, and truthful-qa, assessing the model's common-sense reasoning ability and susceptibility to illusions.
Overall, the SUS-Chat-34B model significantly outperformed models of similar scale and achieved the most advanced comprehensive performance.
![Benchmark](https://github.com/SUSTech-IDEA/SUS-Chat/raw/main/assets/radar.png){#fig-bench}
::: {layout-ncol=2}
## English Understanding
| Model | mmlu (0-shot) |
| ---------------------:|:-------------------:|
| GPT-4 | 83 |
| SUS-Chat-34B | [74.35]{.underline} |
| Qwen-72b-Chat | **74.52** |
| Deepseek-68b-Chat | 69.43 |
| OrionStar-Yi-34B-Chat | 68.51 |
| Yi-34B-Chat | 66.96 |
## Chinese Capabilities
| Model | cmmlu (0-shot) | C-Eval (0-shot)[^1] |
| ---------------------:|:-------------------:|:-------------------:|
| GPT-4 | 71 | 69.9 |
| SUS-Chat-34B | **78.68** | **82.42** |
| Qwen-72b-Chat | [77.02]{.underline} | [77.22]{.underline} |
| Deepseek-68b-Chat | 48.51 | 59.7 |
| OrionStar-Yi-34B-Chat | 66.88 | 65.13 |
| Yi-34B-Chat | 55.16 | 77.16 |
[^1]: C-Eval results are evaluated on the validation datasets
:::
## Math & Reasoning
| Model | gsm8k (0-shot) | MATH (0-shot) | BBH (0-shot) |
| ---------------------:|:-------------------:|:-------------------:|:-------------------:|
| GPT-4 | 91.4 | 45.8 | 86.7 |
| SUS-Chat-34B | **80.06** | 28.7 | 67.62 |
| Qwen-72b-Chat | [76.57]{.underline} | **35.9** | **72.63** |
| Deepseek-68b-Chat | 74.45 | [29.56]{.underline} | [69.73]{.underline} |
| OrionStar-Yi-34B-Chat | 54.36 | 12.8 | 62.88 |
| Yi-34B-Chat | 63.76 | 10.02 | 61.54 |
## More Tasks
| Model | winogrande (5-shot) | arc (25-shot) | hellaswag (10-shot) | TruthfulQA mc1 (0-shot) | TruthfulQA mc2 (0-shot) |
| ---------------------:|:-------------------:|:-------------------:|:-------------------:|:-----------------------:|:-----------------------:|
| GPT-4 | --- | 94.5 | 91.4 | 59.00 | --- |
| SUS-Chat-34B | **81.22** | [81.54]{.underline} | 83.79 | **40.64** | **57.47** |
| Qwen-72b-Chat | 76.09 | **82.10** | [86.06]{.underline} | 39.17 | [56.37]{.underline} |
| Deepseek-68b-Chat | [80.58]{.underline} | 81.29 | **87.02** | [40.02]{.underline} | 50.64 |
| OrionStar-Yi-34B-Chat | 77.27 | 80.19 | 84.54 | 36.47 | 53.24 |
| Yi-34B-Chat | 76.64 | 70.66 | 82.29 | 38.19 | 54.57 |
## Overall
| Model | Average |
| ---------------------:|:---------:|
| SUS-Chat-34B | **69.05** |
| Qwen-72b-Chat | 68.41 |
| Deepseek-68b-Chat | 62.91 |
| OrionStar-Yi-34B-Chat | 60.21 |
| Yi-34B-Chat | 59.72 |
To reproduce the results, please start a corresponding vllm server and refer to [here](https://sustech-tlem.static.hf.space/index.html#start-evaluating-your-model-in-3-line).
# Usage
SUS-Chat-34B is a standard LLaMA model and should be seamlessly compatible with the LLaMA ecosystem. We provide the following example to demonstrate how it can be used for multi-turn dialogues.
Feel free to [open an issue](https://github.com/SUSTech-IDEA/SUS-Chat/issues) if you have any questions.
```{python}
#| eval: false
from transformers import AutoModelForCausalLM, AutoTokenizer # 🤗 Transformers, or
# from modelscope import AutoModelForCausalLM, AutoTokenizer # 🤖 ModelScope
def chat_template(messages):
history = ""
for message in messages:
match message:
case {"role": "user", "content": message}:
history += f"### Human: {message}\n\n### Assistant: "
case {"role": "assistant", "content": message}:
history += message
return history
model_path = "SUSTech/SUS-Chat-34B"
# model_path = "SUSTC/SUS-Chat-34B" # ModelScope
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, device_map="auto", torch_dtype="auto"
).eval()
messages = [{"role": "user", "content": "hi"}]
input_ids = tokenizer.encode(
chat_template(messages), return_tensors="pt", add_special_tokens=False
).to("cuda")
output_ids = model.generate(input_ids.to("cuda"), max_length=256)
response = tokenizer.decode(
output_ids[0][input_ids.shape[1] :], skip_special_tokens=False
)
messages.append({"role": "assistant", "content": response})
# Second round
messages.append({"role": "user", "content": "What is the capital of China?"})
input_ids = tokenizer.encode(
chat_template(messages), return_tensors="pt", add_special_tokens=False
).to("cuda")
output_ids = model.generate(input_ids.to("cuda"), max_length=256)
response = tokenizer.decode(
output_ids[0][input_ids.shape[1] :], skip_special_tokens=False
)
messages.append({"role": "assistant", "content": response})
```
# Limitations
SUS-Chat has only undergone supervised fine-tuning and has not yet been trained on human preference learning. As a result, it may produce unreasonable responses in some situations and exacerbate existing issues in language models, including hallucinations, non-determinism, and cumulative errors. To achieve better performance for downstream tasks, we recommend adjusting the generation configuration parameters accordingly.
# Disclaimer
During the training process, we used data compliance check algorithms to ensure the compliance of the training model as much as possible. Due to the complexity of the data and the diverse use cases of language models, we cannot guarantee that the model will produce correct and reasonable outputs in all scenarios. Please be aware that there is still a risk of the model generating problematic outputs. We will not be responsible for any risks or issues arising from misuse, misguidance, illegal use, and related misinformation, as well as data security issues related to the model.
# License
This model is developed entirely for academic research and free commercial use, but it must adhere to the [license](https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt) from [01-ai](https://huggingface.co/01-ai).