Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Release 5.3.2 #173

Merged
merged 2 commits into from
Sep 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 7 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,12 @@
# @langtrase/typescript-sdk


## 5.3.2

### Patch Changes

- Add Vertex AI tools and funcition tracing support

## 5.3.1

### Patch Changes
Expand Down
4 changes: 2 additions & 2 deletions package-lock.json

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 1 addition & 1 deletion package.json
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
{
"name": "@langtrase/typescript-sdk",
"version": "5.3.1",
"version": "5.3.2",
"description": "A typescript SDK for Langtrace",
"main": "dist/index.js",
"types": "dist/index.d.ts",
Expand Down
86 changes: 83 additions & 3 deletions src/examples/vertexai/basic.ts
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
import { init } from '@langtrace-init/init'
import dotenv from 'dotenv'
import { VertexAI } from '@google-cloud/vertexai'
import { VertexAI, FunctionDeclarationSchemaType } from '@google-cloud/vertexai'

dotenv.config()
init({ batch: false, write_spans_to_console: true })
Expand All @@ -13,6 +13,38 @@ const vertexAI = new VertexAI({ project, location })

const generativeModel = vertexAI.getGenerativeModel({ model: textModel })

const functionDeclarations = [
{
functionDeclarations: [
{
name: 'get_current_weather',
description: 'get weather in a given location',
parameters: {
type: FunctionDeclarationSchemaType.OBJECT,
properties: {
location: { type: FunctionDeclarationSchemaType.STRING },
unit: {
type: FunctionDeclarationSchemaType.STRING,
enum: ['celsius', 'fahrenheit']
}
},
required: ['location']
}
}
]
}
]

const functionResponseParts = [
{
functionResponse: {
name: 'get_current_weather',
response:
{ name: 'get_current_weather', content: { weather: 'super nice' } }
}
}
]

export const basicVertexAIChat = async (): Promise<void> => {
const request = { contents: [{ role: 'user', parts: [{ text: 'How are you doing today?' }] }] }
const result = await generativeModel.generateContent(request)
Expand Down Expand Up @@ -65,11 +97,59 @@ export const basicVertexAIStartChatStream = async (): Promise<void> => {
for await (const item of result.stream) {
const text = item.candidates?.[0]?.content?.parts?.[0]?.text
if (text === undefined || text === null) {
console.log('Stream chunk: ', text)
} else {
console.log('Stream chunk: No text available')
} else {
console.log('Stream chunk: ', text)
}
}
const aggregatedResponse = await result.response
console.log('Aggregated response: ', JSON.stringify(aggregatedResponse))
}

export const basicVertexAIStartChatWithToolRequest = async (): Promise<void> => {
const request = {
contents: [
{ role: 'user', parts: [{ text: 'What is the weather in Boston?' }] },
{ role: 'model', parts: [{ functionCall: { name: 'get_current_weather', args: { location: 'Boston' } } }] },
{ role: 'user', parts: functionResponseParts }
],
tools: functionDeclarations
}
const streamingResult =
await generativeModel.generateContentStream(request)
for await (const item of streamingResult.stream) {
if (item?.candidates !== undefined) {
console.log(item.candidates[0])
}
}
}

export const basicVertexAIStartChatWithToolResponse = async (): Promise<void> => {
// Create a chat session and pass your function declarations
const chat = generativeModel.startChat({ tools: functionDeclarations })

const chatInput1 = 'What is the weather in Boston?'

// This should include a functionCall response from the model
const streamingResult1 = await chat.sendMessageStream(chatInput1)
for await (const item of streamingResult1.stream) {
if (item?.candidates !== undefined) {
console.log(item.candidates[0])
}
}
const response1 = await streamingResult1.response
console.log('first aggregated response: ', JSON.stringify(response1))

// Send a follow up message with a FunctionResponse
const streamingResult2 = await chat.sendMessageStream(functionResponseParts)
for await (const item of streamingResult2.stream) {
if (item?.candidates !== undefined) {
console.log(item.candidates[0])
}
}

// This should include a text response from the model using the response content
// provided above
const response2 = await streamingResult2.response
console.log('second aggregated response: ', JSON.stringify(response2))
}
81 changes: 73 additions & 8 deletions src/instrumentation/vertexai/patch.ts
Original file line number Diff line number Diff line change
Expand Up @@ -53,29 +53,83 @@ export function generateContentPatch (
const serviceProvider = Vendors.VERTEXAI
const customAttributes = context.active().getValue(LANGTRACE_ADDITIONAL_SPAN_ATTRIBUTES_KEY) ?? {}

const prompts = args.flatMap((arg: string | { contents: CandidateContent[] }) => {
if (typeof arg === 'string') {
let argTools: any[] = []
const prompts = args.flatMap((arg: string | { contents?: CandidateContent[], tools?: any, functionResponse?: any }) => {
if (Array.isArray(arg)) {
// Handle the case where `arg` is an array (like [ { functionResponse: ... } ])
return arg.flatMap(innerArg => {
if (Array.isArray(innerArg.tools)) argTools = argTools.concat(innerArg.tools)
if (innerArg.functionResponse != null) {
return [{ role: 'model', content: JSON.stringify(innerArg.functionResponse) }]
} else if (innerArg.contents != null) {
return innerArg.contents.map((content: CandidateContent) => ({
role: content.role,
content: content.parts.map((part: CandidateContentPart) => {
if (typeof part.text === 'string') {
return part.text
} else if ('functionCall' in part) {
return JSON.stringify((part as any).functionCall)
} else if (typeof part === 'object') {
return JSON.stringify(part)
} else {
return ''
}
}).join('')
}))
} else {
return []
}
})
} else if (typeof arg === 'string') {
// Handle the case where `arg` is a string
return [{ role: 'user', content: arg }]
} else {
} else if (arg.contents != null) {
if (Array.isArray(arg.tools)) argTools = argTools.concat(arg.tools)
// Handle the case where `arg` has the `contents` structure
return arg.contents.map(content => ({
role: content.role,
content: content.parts.map(part => part.text).join('')
content: content.parts.map((part: CandidateContentPart) => {
if (typeof part.text === 'string') {
return part.text
} else if ('functionCall' in part) {
return JSON.stringify((part as any).functionCall)
} else if (typeof part === 'object') {
return JSON.stringify(part)
} else {
return ''
}
}).join('')
}))
} else if (arg.functionResponse != null) {
// Handle the case where `arg` has a `functionResponse` structure
return [{ role: 'model', content: JSON.stringify(arg.functionResponse) }]
} else {
return []
}
})

const allTools = argTools.concat(this?.tools ?? [])
const attributes: LLMSpanAttributes = {
'langtrace.sdk.name': sdkName,
'langtrace.service.name': serviceProvider,
'langtrace.service.type': 'llm',
'gen_ai.operation.name': 'chat',
'langtrace.service.version': version,
'langtrace.version': langtraceVersion,
'url.full': '',
'url.path': this?.publisherModelEndpoint,
'gen_ai.request.model': this?.model,
'url.full': this?.apiEndpoint,
'url.path': this?.publisherModelEndpoint ?? this?.resourcePath ?? undefined,
'gen_ai.request.model': (() => {
if (this?.model !== undefined && this.model !== null) {
return this.model
}
if (typeof this?.resourcePath === 'string') {
return this.resourcePath.split('/').pop()
}
if (typeof this?.publisherModelEndpoint === 'string') {
return this.publisherModelEndpoint.split('/').pop()
}
return undefined
})(),
'http.max.retries': this?._client?.maxRetries,
'http.timeout': this?._client?.timeout,
'gen_ai.request.temperature': this?.generationConfig?.temperature,
Expand All @@ -86,6 +140,7 @@ export function generateContentPatch (
'gen_ai.request.frequency_penalty': this?.generationConfig?.frequencyPenalty,
'gen_ai.request.presence_penalty': this?.generationConfig?.presencePenalty,
'gen_ai.request.seed': this?.generationConfig?.seed,
'gen_ai.request.tools': allTools.length > 0 ? JSON.stringify(allTools) : undefined,
...customAttributes
}

Expand Down Expand Up @@ -179,7 +234,17 @@ async function * handleStreamResponse (
const { content } = chunk.candidates.map((candidate: Candidate) => {
return {
role: candidate.content.role,
content: candidate.content.parts.map((part: CandidateContentPart) => part.text).join('')
content: candidate.content.parts.map((part: CandidateContentPart) => {
if (typeof part.text === 'string') {
return part.text
} else if ('functionCall' in part) {
return JSON.stringify(part.functionCall)
} else if (typeof part === 'object') {
return JSON.stringify(part)
} else {
return ''
}
}).join('')
}
})[0]
const tokenCount = estimateTokens(content)
Expand Down
1 change: 1 addition & 0 deletions src/instrumentation/vertexai/types.ts
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
export interface CandidateContentPart {
text: string
functionCall: any
}

export interface CandidateContent {
Expand Down
Loading