IDRNet (NeurIPS'2023)
@inproceedings{jin2023idrnet,
title={IDRNet: Intervention-Driven Relation Network for Semantic Segmentation},
author={Jin, Zhenchao and Hu, Xiaowei and Zhu, Lingting and Song, Luchuan and Yuan, Li and Yu, Lequan},
booktitle={Thirty-Seventh Conference on Neural Information Processing Systems},
year={2023}
}
Segmentor | Pretrain | Backbone | Crop Size | Schedule | Train/Eval Set | mIoU | Download |
---|---|---|---|---|---|---|---|
FCN | ImageNet-1k-224x224 | R-50-D8 | 473x473 | LR/POLICY/BS/EPOCH: 0.01/poly/32/150 | train/val | 51.24% | cfg | model | log |
PSNet | ImageNet-1k-224x224 | R-50-D8 | 473x473 | LR/POLICY/BS/EPOCH: 0.01/poly/32/150 | train/val | 53.29% | cfg | model | log |
UperNet | ImageNet-1k-224x224 | R-50-D8 | 473x473 | LR/POLICY/BS/EPOCH: 0.01/poly/32/150 | train/val | 54.00% | cfg | model | log |
DeepLabV3 | ImageNet-1k-224x224 | R-50-D8 | 473x473 | LR/POLICY/BS/EPOCH: 0.01/poly/32/150 | train/val | 53.87% | cfg | model | log |
Segmentor | Pretrain | Backbone | Crop Size | Schedule | Train/Eval Set | mIoU | Download |
---|---|---|---|---|---|---|---|
FCN | ImageNet-1k-224x224 | R-50-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/130 | train/val | 43.61% | cfg | model | log |
PSNet | ImageNet-1k-224x224 | R-50-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/130 | train/val | 44.02% | cfg | model | log |
UperNet | ImageNet-1k-224x224 | R-50-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/130 | train/val | 44.84% | cfg | model | log |
DeepLabV3 | ImageNet-1k-224x224 | R-50-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/130 | train/val | 44.75% | cfg | model | log |
Segmentor | Pretrain | Backbone | Crop Size | Schedule | Train/Eval Set | mIoU | Download |
---|---|---|---|---|---|---|---|
FCN | ImageNet-1k-224x224 | R-50-D8 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/8/220 | train/val | 79.91% | cfg | model | log |
PSNet | ImageNet-1k-224x224 | R-50-D8 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/8/220 | train/val | 79.88% | cfg | model | log |
UperNet | ImageNet-1k-224x224 | R-50-D8 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/8/220 | train/val | 80.81% | cfg | model | log |
DeepLabV3 | ImageNet-1k-224x224 | R-50-D8 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/8/220 | train/val | 80.69% | cfg | model | log |
Segmentor | Pretrain | Backbone | Crop Size | Schedule | Train/Eval Set | mIoU | Download |
---|---|---|---|---|---|---|---|
FCN | ImageNet-1k-224x224 | R-50-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.001/poly/16/110 | train/test | 38.61% | cfg | model | log |
PSNet | ImageNet-1k-224x224 | R-50-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.001/poly/16/110 | train/test | 39.13% | cfg | model | log |
UperNet | ImageNet-1k-224x224 | R-50-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.001/poly/16/110 | train/test | 39.35% | cfg | model | log |
DeepLabV3 | ImageNet-1k-224x224 | R-50-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.001/poly/16/110 | train/test | 39.31% | cfg | model | log |
Segmentor | Pretrain | Backbone | Crop Size | Schedule | Train/Eval Set | mIoU/mIoU (ms+flip) | Download |
---|---|---|---|---|---|---|---|
UperNet | ImageNet-22k-384x384 | Swin-Large | 640x640 | LR/POLICY/BS/EPOCH: 0.00006/poly/16/260 | train/val | 63.82%/64.50% | cfg | model | log |
Segmentor | Pretrain | Backbone | Crop Size | Schedule | Train/Eval Set | mIoU/mIoU (flip)/mIoU (ms+flip) | Download |
---|---|---|---|---|---|---|---|
UperNet | ImageNet-22k-384x384 | Swin-Large | 473x473 | LR/POLICY/BS/EPOCH: 0.00006/poly/16/110 | train/val | 60.53%/60.83%/61.17% | cfg | model | log |
Segmentor | Pretrain | Backbone | Crop Size | Schedule | Train/Eval Set | mIoU/mIoU (ms+flip) | Download |
---|---|---|---|---|---|---|---|
UperNet | ImageNet-22k-384x384 | Swin-Large | 640x640 | LR/POLICY/BS/EPOCH: 0.00006/poly/16/130 | train/val | 53.97%/54.68% | cfg | model | log |
Segmentor | Pretrain | Backbone | Crop Size | Schedule | Train/Eval Set | mIoU/mIoU (ms+flip) | Download |
---|---|---|---|---|---|---|---|
UperNet | ImageNet-22k-384x384 | Swin-Large | 640x640 | LR/POLICY/BS/EPOCH: 0.00006/poly/16/110 | train/test | 49.94%/50.54% | cfg | model | log |
You can also download the model weights from following sources:
- BaiduNetdisk: https://pan.baidu.com/s/1gD-NJJWOtaHCtB0qHE79rA with access code s757
Please note that, due to differences in computational precision, the numerical values obtained when testing model performance on different versions of PyTorch or graphics cards may vary slightly. This is a normal phenomenon and the performance differences are generally within 0.1%.