Skip to content

Latest commit

 

History

History

idrnet

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 

Introduction

Official Repo

Code Snippet

IDRNet (NeurIPS'2023)
@inproceedings{jin2023idrnet,
    title={IDRNet: Intervention-Driven Relation Network for Semantic Segmentation},
    author={Jin, Zhenchao and Hu, Xiaowei and Zhu, Lingting and Song, Luchuan and Yuan, Li and Yu, Lequan},
    booktitle={Thirty-Seventh Conference on Neural Information Processing Systems},
    year={2023}
}

Results of Different Frameworks

LIP

Segmentor Pretrain Backbone Crop Size Schedule Train/Eval Set mIoU Download
FCN ImageNet-1k-224x224 R-50-D8 473x473 LR/POLICY/BS/EPOCH: 0.01/poly/32/150 train/val 51.24% cfg | model | log
PSNet ImageNet-1k-224x224 R-50-D8 473x473 LR/POLICY/BS/EPOCH: 0.01/poly/32/150 train/val 53.29% cfg | model | log
UperNet ImageNet-1k-224x224 R-50-D8 473x473 LR/POLICY/BS/EPOCH: 0.01/poly/32/150 train/val 54.00% cfg | model | log
DeepLabV3 ImageNet-1k-224x224 R-50-D8 473x473 LR/POLICY/BS/EPOCH: 0.01/poly/32/150 train/val 53.87% cfg | model | log

ADE20k

Segmentor Pretrain Backbone Crop Size Schedule Train/Eval Set mIoU Download
FCN ImageNet-1k-224x224 R-50-D8 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 43.61% cfg | model | log
PSNet ImageNet-1k-224x224 R-50-D8 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 44.02% cfg | model | log
UperNet ImageNet-1k-224x224 R-50-D8 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 44.84% cfg | model | log
DeepLabV3 ImageNet-1k-224x224 R-50-D8 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 44.75% cfg | model | log

CityScapes

Segmentor Pretrain Backbone Crop Size Schedule Train/Eval Set mIoU Download
FCN ImageNet-1k-224x224 R-50-D8 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/8/220 train/val 79.91% cfg | model | log
PSNet ImageNet-1k-224x224 R-50-D8 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/8/220 train/val 79.88% cfg | model | log
UperNet ImageNet-1k-224x224 R-50-D8 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/8/220 train/val 80.81% cfg | model | log
DeepLabV3 ImageNet-1k-224x224 R-50-D8 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/8/220 train/val 80.69% cfg | model | log

COCOStuff-10k

Segmentor Pretrain Backbone Crop Size Schedule Train/Eval Set mIoU Download
FCN ImageNet-1k-224x224 R-50-D8 512x512 LR/POLICY/BS/EPOCH: 0.001/poly/16/110 train/test 38.61% cfg | model | log
PSNet ImageNet-1k-224x224 R-50-D8 512x512 LR/POLICY/BS/EPOCH: 0.001/poly/16/110 train/test 39.13% cfg | model | log
UperNet ImageNet-1k-224x224 R-50-D8 512x512 LR/POLICY/BS/EPOCH: 0.001/poly/16/110 train/test 39.35% cfg | model | log
DeepLabV3 ImageNet-1k-224x224 R-50-D8 512x512 LR/POLICY/BS/EPOCH: 0.001/poly/16/110 train/test 39.31% cfg | model | log

SOTA Results

PASCAL-Context-59

Segmentor Pretrain Backbone Crop Size Schedule Train/Eval Set mIoU/mIoU (ms+flip) Download
UperNet ImageNet-22k-384x384 Swin-Large 640x640 LR/POLICY/BS/EPOCH: 0.00006/poly/16/260 train/val 63.82%/64.50% cfg | model | log

LIP

Segmentor Pretrain Backbone Crop Size Schedule Train/Eval Set mIoU/mIoU (flip)/mIoU (ms+flip) Download
UperNet ImageNet-22k-384x384 Swin-Large 473x473 LR/POLICY/BS/EPOCH: 0.00006/poly/16/110 train/val 60.53%/60.83%/61.17% cfg | model | log

ADE20k

Segmentor Pretrain Backbone Crop Size Schedule Train/Eval Set mIoU/mIoU (ms+flip) Download
UperNet ImageNet-22k-384x384 Swin-Large 640x640 LR/POLICY/BS/EPOCH: 0.00006/poly/16/130 train/val 53.97%/54.68% cfg | model | log

COCOStuff-10k

Segmentor Pretrain Backbone Crop Size Schedule Train/Eval Set mIoU/mIoU (ms+flip) Download
UperNet ImageNet-22k-384x384 Swin-Large 640x640 LR/POLICY/BS/EPOCH: 0.00006/poly/16/110 train/test 49.94%/50.54% cfg | model | log

More

You can also download the model weights from following sources:

Please note that, due to differences in computational precision, the numerical values obtained when testing model performance on different versions of PyTorch or graphics cards may vary slightly. This is a normal phenomenon and the performance differences are generally within 0.1%.