-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_utils.py
executable file
·146 lines (117 loc) · 5.47 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities for downloading data from WMT, tokenizing, vocabularies."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import re
from six.moves import urllib
from tensorflow.python.platform import gfile
# Special vocabulary symbols - we always put them at the start.
_PAD = b"_PAD"
_GO = b"_GO"
_EOS = b"_EOS"
_UNK = b"_UNK"
_START_VOCAB = [_PAD, _GO, _EOS, _UNK]
PAD_ID = 0
GO_ID = 1
EOS_ID = 2
UNK_ID = 3
# Regular expressions used to tokenize.
_WORD_SPLIT = re.compile(b"([.,!?\"':;)(])")
_DIGIT_RE = re.compile(br"\d")
def basic_tokenizer(sentence):
"""Very basic tokenizer: split the sentence into a list of tokens."""
words = []
for space_separated_fragment in sentence.strip().split():
words.extend(re.split(_WORD_SPLIT, space_separated_fragment))
return [w for w in words if w]
def create_vocabulary(vocabulary_path, data_path, max_vocabulary_size,
tokenizer=None, normalize_digits=True):
if not gfile.Exists(vocabulary_path):
print("Creating vocabulary %s from %s" % (vocabulary_path, data_path))
vocab = {}
with gfile.GFile(data_path, mode="rb") as f:
counter = 0
for line in f:
counter += 1
if counter % 100000 == 0:
print(" processing line %d" % counter)
tokens = tokenizer(line) if tokenizer else basic_tokenizer(line)
for w in tokens:
word = re.sub(_DIGIT_RE, b"0", w) if normalize_digits else w
if word in vocab:
vocab[word] += 1
else:
vocab[word] = 1
vocab_list = _START_VOCAB + sorted(vocab, key=vocab.get, reverse=True)
print('>> Full Vocabulary Size :',len(vocab_list))
if len(vocab_list) > max_vocabulary_size:
vocab_list = vocab_list[:max_vocabulary_size]
with gfile.GFile(vocabulary_path, mode="wb") as vocab_file:
for w in vocab_list:
vocab_file.write(w + b"\n")
def initialize_vocabulary(vocabulary_path):
if gfile.Exists(vocabulary_path):
rev_vocab = []
with gfile.GFile(vocabulary_path, mode="rb") as f:
rev_vocab.extend(f.readlines())
rev_vocab = [line.strip() for line in rev_vocab]
vocab = dict([(x, y) for (y, x) in enumerate(rev_vocab)])
return vocab, rev_vocab
else:
raise ValueError("Vocabulary file %s not found.", vocabulary_path)
def sentence_to_token_ids(sentence, vocabulary, tokenizer=None, normalize_digits=True):
if tokenizer:
words = tokenizer(sentence)
else:
words = basic_tokenizer(sentence)
if not normalize_digits:
return [vocabulary.get(w, UNK_ID) for w in words]
# Normalize digits by 0 before looking words up in the vocabulary.
return [vocabulary.get(re.sub(_DIGIT_RE, b"0", w), UNK_ID) for w in words]
def data_to_token_ids(data_path, target_path, vocabulary_path,
tokenizer=None, normalize_digits=True):
if not gfile.Exists(target_path):
print("Tokenizing data in %s" % data_path)
vocab, _ = initialize_vocabulary(vocabulary_path)
with gfile.GFile(data_path, mode="rb") as data_file:
with gfile.GFile(target_path, mode="w") as tokens_file:
counter = 0
for line in data_file:
counter += 1
if counter % 100000 == 0:
print(" tokenizing line %d" % counter)
token_ids = sentence_to_token_ids(line, vocab, tokenizer,
normalize_digits)
tokens_file.write(" ".join([str(tok) for tok in token_ids]) + "\n")
def prepare_custom_data(working_directory, train_enc, train_dec, test_enc, test_dec, enc_vocabulary_size, dec_vocabulary_size, tokenizer=None):
# Create vocabularies of the appropriate sizes.
enc_vocab_path = os.path.join(working_directory, "vocab%d.enc" % enc_vocabulary_size)
dec_vocab_path = os.path.join(working_directory, "vocab%d.dec" % dec_vocabulary_size)
create_vocabulary(enc_vocab_path, train_enc, enc_vocabulary_size, tokenizer)
create_vocabulary(dec_vocab_path, train_dec, dec_vocabulary_size, tokenizer)
# Create token ids for the training data.
enc_train_ids_path = train_enc + (".ids%d" % enc_vocabulary_size)
dec_train_ids_path = train_dec + (".ids%d" % dec_vocabulary_size)
data_to_token_ids(train_enc, enc_train_ids_path, enc_vocab_path, tokenizer)
data_to_token_ids(train_dec, dec_train_ids_path, dec_vocab_path, tokenizer)
# Create token ids for the development data.
enc_dev_ids_path = test_enc + (".ids%d" % enc_vocabulary_size)
dec_dev_ids_path = test_dec + (".ids%d" % dec_vocabulary_size)
data_to_token_ids(test_enc, enc_dev_ids_path, enc_vocab_path, tokenizer)
data_to_token_ids(test_dec, dec_dev_ids_path, dec_vocab_path, tokenizer)
return (enc_train_ids_path, dec_train_ids_path, enc_dev_ids_path, dec_dev_ids_path, enc_vocab_path, dec_vocab_path)