-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_network.py
74 lines (60 loc) · 2.05 KB
/
test_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# To check output , Open command prompt point to your current directory and give below command
##python test_network.py --model M:\pythonD\DogCat\CatDog.model --image M:\pythonD\DogCat\dog.jpg
##python test_network.py --model M:\pythonD\DogCat\CatDog.model --image M:\pythonD\DogCat\cat.jpg
# import the necessary packages
import warnings
warnings.simplefilter("ignore")
from keras.preprocessing.image import img_to_array
from keras.models import load_model
import numpy as np
import argparse
import imutils
import cv2
from os import listdir
##Required Changes && while entering in cmd Prompt Give proper location of model and image.
ht=28
wd=28
pathh = "M:/pythonD/DogCat/CatDog" # Database To take automatically the req class names.
className = []
classNames = listdir(pathh)
totClass = len(classNames)
print(classNames)
print(totClass)
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-m", "--model", required=True,
help="path to trained model model")
ap.add_argument("-i", "--image", required=True,
help="path to input image")
args = vars(ap.parse_args())
# load the image
image = cv2.imread(args["image"])
orig = image.copy()
# pre-process the image for classification
try:
image = cv2.resize(image, (ht, wd))
image = image.astype("float") / 255.0
image = img_to_array(image)
image = np.expand_dims(image, axis=0)
except Exception as e:
print("Error Occured : ",e)
# load the trained convolutional neural network
print("[INFO] loading network...")
model = load_model(args["model"])
(zero, one) = model.predict(image)[0]
prob = [zero,one]
maxProb = max(prob)
maxIndex = prob.index(maxProb)
label = classNames[maxIndex]
proba = maxProb
for i in range(0,totClass):
print(f'{classNames[i]} : {prob[i]}')
# build the label
label = "{}: {:.2f}%".format(label, proba * 100)
# draw the label on the image
output = imutils.resize(orig, width=400)
cv2.putText(output, label, (10, 25), cv2.FONT_HERSHEY_SIMPLEX,
0.7, (0, 255, 0), 2)
# show the output image
cv2.imshow("Output", output)
cv2.waitKey(0)