Skip to content

(MSAFF) A Multi-Stage Adaptive Feature Fusion Neural Network for Multimodal Gait Recognition

License

Notifications You must be signed in to change notification settings

ShinanZou/MSAFF

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MSAFF

A Multi-Stage Adaptive Feature Fusion Neural Network for Multimodal Gait Recognition

The article has been accepted by IJCB2023 (oral).

Requirements

  • pytorch >= 1.6
  • torchvision
  • pyyaml
  • tensorboard
  • opencv-python
  • tqdm
  • py7zr
  • tabulate
  • termcolor

Installation

You can replace the second command from the bottom to install pytorch based on your CUDA version.

git clone https://github.com/ShinanZou/MSAFF.git
cd MSAFF
conda create --name py37torch160 python=3.7
conda activate py37torch160
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2 -c pytorch
pip install tqdm pyyaml tensorboard opencv-python tqdm py7zr tabulate termcolor

Data Pretreatment

Run the following command to preprocess the CASIA-B and Gait3D dataset.

python misc/pretreatment.py --input_path '2D_Silhouettes' --output_path 'sils-64-44-pkl' --img_h 64 --img_w 44
python misc/pretreatment_ske.py --input_path '2D_Poses' --output_path 'skes-pkl'

Run the following command to preprocess the GREW dataset.

// silhouettes
python misc/pretreatment_grew.py --input_path "GREW" --output_path "GREW-64-44-pkl" --img_h 64 --img_w 44 --subset "train"
python misc/pretreatment_grew.py --input_path "GREW" --output_path "GREW-64-44-pkl" --img_h 64 --img_w 44 --subset "test/gallery"
python misc/pretreatment_grew_probe.py --input_path "GREW" --output_path "GREW-64-44-pkl" --img_h 64 --img_w 44

// skeletons
python misc/pretreatment_grew_ske.py --input_path "GREW" --output_path "GREW-skes-pkl" --img_h 64 --img_w 44 --subset "train"
python misc/pretreatment_grew_ske.py --input_path "GREW" --output_path "GREW-skes-pkl" --img_h 64 --img_w 44 --subset "test/gallery"
python misc/pretreatment_grew_ske_probe.py --input_path "GREW" --output_path "GREW-skes-pkl" --img_h 64 --img_w 44

Train

Run the following command:

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 lib/main.py --cfgs ./config/MsaffGait_CasiaB.yaml --phase train
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 lib/main.py --cfgs ./config/MsaffGait_Gait3D.yaml --phase train
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 lib/main.py --cfgs ./config/MsaffGait_GREW.yaml --phase train

Test

Run the following command:

CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch --nproc_per_node=1 lib/main.py --cfgs ./config/MsaffGait_CasiaB.yaml --phase test
CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch --nproc_per_node=1 lib/main.py --cfgs ./config/MsaffGait_Gait3D.yaml --phase test
CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch --nproc_per_node=1 lib/main.py --cfgs ./config/MsaffGait_GREW.yaml --phase test

Citation

Please cite this paper in your publications if it helps your research:

@INPROCEEDINGS{ShinanZouMSAFF
  author={Zou, Shinan and Xiong, Jianbo and Fan, Chao and Yu, Shiqi and Tang, Jin},
  booktitle={2023 IEEE International Joint Conference on Biometrics (IJCB)}, 
  title={A Multi-Stage Adaptive Feature Fusion Neural Network for Multimodal Gait Recognition}, 
  year={2023}}

Acknowledgement

Here are some great resources we benefit:

About

(MSAFF) A Multi-Stage Adaptive Feature Fusion Neural Network for Multimodal Gait Recognition

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published