A Multi-Stage Adaptive Feature Fusion Neural Network for Multimodal Gait Recognition
The article has been accepted by IJCB2023 (oral).
- IJCB 2023 Version: Download paper (IJCB2023)
- ArXiv Preprint: Download preprint (ArXiv)
- pytorch >= 1.6
- torchvision
- pyyaml
- tensorboard
- opencv-python
- tqdm
- py7zr
- tabulate
- termcolor
You can replace the second command from the bottom to install pytorch based on your CUDA version.
git clone https://github.com/ShinanZou/MSAFF.git
cd MSAFF
conda create --name py37torch160 python=3.7
conda activate py37torch160
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2 -c pytorch
pip install tqdm pyyaml tensorboard opencv-python tqdm py7zr tabulate termcolor
Run the following command to preprocess the CASIA-B and Gait3D dataset.
python misc/pretreatment.py --input_path '2D_Silhouettes' --output_path 'sils-64-44-pkl' --img_h 64 --img_w 44
python misc/pretreatment_ske.py --input_path '2D_Poses' --output_path 'skes-pkl'
Run the following command to preprocess the GREW dataset.
// silhouettes
python misc/pretreatment_grew.py --input_path "GREW" --output_path "GREW-64-44-pkl" --img_h 64 --img_w 44 --subset "train"
python misc/pretreatment_grew.py --input_path "GREW" --output_path "GREW-64-44-pkl" --img_h 64 --img_w 44 --subset "test/gallery"
python misc/pretreatment_grew_probe.py --input_path "GREW" --output_path "GREW-64-44-pkl" --img_h 64 --img_w 44
// skeletons
python misc/pretreatment_grew_ske.py --input_path "GREW" --output_path "GREW-skes-pkl" --img_h 64 --img_w 44 --subset "train"
python misc/pretreatment_grew_ske.py --input_path "GREW" --output_path "GREW-skes-pkl" --img_h 64 --img_w 44 --subset "test/gallery"
python misc/pretreatment_grew_ske_probe.py --input_path "GREW" --output_path "GREW-skes-pkl" --img_h 64 --img_w 44
Run the following command:
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 lib/main.py --cfgs ./config/MsaffGait_CasiaB.yaml --phase train
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 lib/main.py --cfgs ./config/MsaffGait_Gait3D.yaml --phase train
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 lib/main.py --cfgs ./config/MsaffGait_GREW.yaml --phase train
Run the following command:
CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch --nproc_per_node=1 lib/main.py --cfgs ./config/MsaffGait_CasiaB.yaml --phase test
CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch --nproc_per_node=1 lib/main.py --cfgs ./config/MsaffGait_Gait3D.yaml --phase test
CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch --nproc_per_node=1 lib/main.py --cfgs ./config/MsaffGait_GREW.yaml --phase test
Please cite this paper in your publications if it helps your research:
@INPROCEEDINGS{ShinanZouMSAFF
author={Zou, Shinan and Xiong, Jianbo and Fan, Chao and Yu, Shiqi and Tang, Jin},
booktitle={2023 IEEE International Joint Conference on Biometrics (IJCB)},
title={A Multi-Stage Adaptive Feature Fusion Neural Network for Multimodal Gait Recognition},
year={2023}}
Here are some great resources we benefit: