Tutorial for SUSTech1K
Download the dataset from the link. decompress these two file by following command:
unzip -P password SUSTech1K-pkl.zip | xargs -n1 tar xzvf
password should be obtained by signing agreement and sending to email (shencf2019@mail.sustech.edu.cn)
Then you will get SUSTech1K formatted as:
SUSTech1K-Released-pkl
├── 0000 # Identity
│ ├── 00-nm # sequence_number - sequence_covariates
│ │ ├── 000 # viewpoint_angle
│ │ │ ├── 00-000-LiDAR-PCDs.pkl # (10Hz) Point Clouds
│ │ │ ├── 01-000-LiDAR-PCDs_depths.pkl # (10Hz) Projected Depths from Point Clouds
│ │ │ ├── 02-000-LiDAR-PCDs_sils.pkl # (10Hz) Projected Silhouettes from Point Clouds
│ │ │ ├── 03-000-Camera-Pose.pkl # (30Hz) Estimated Skeleton using ViTPose
│ │ │ ├── 04-000-Camera-Ratios-HW.pkl # (30Hz) (H,W) of Camera Images
│ │ │ ├── 05-000-Camera-RGB_raw.pkl # (30Hz) Raw Camera images (frames, 64, 64, 3) (if you want larger resolution, you can process SUSTech1K-Released-RAW by yourself using pretreatment_SUSTech1K.py
│ │ │ ├── 06-000-Camera-Sils_aligned.pkl # (30Hz) Aligned silhouettes
│ │ │ ├── 07-000-Camera-Sils_raw.pkl # (30Hz) Estimated silhouettes without alignment
│ │ │ ├── 08-sync-000-LiDAR-PCDs.pkl # (10Hz synchronized to Camera) Point Clouds,
│ │ │ ├── 09-sync-000-LiDAR-PCDs_depths.pkl # (10Hz synchronized to Camera) Projected Depths from Point Clouds
│ │ │ ├── 10-sync-000-LiDAR-PCDs_sils.pkl # (10Hz synchronized to Camera) Projected Silhouettes from Point Clouds
│ │ │ ├── 11-sync-000-Camera-Pose.pkl # (10Hz synchronized to LiDAR) Estimated Skeleton using ViTPose
│ │ │ ├── 12-sync-000-Camera-Ratios-HW.pkl # (10Hz synchronized to LiDAR) (H,W) of Camera Images
│ │ │ ├── 13-sync-000-Camera-RGB_raw.pkl # (10Hz synchronized to LiDAR) Raw Camera images (frames, 64, 64, 3)
│ │ │ ├── 14-sync-000-Camera-Sils_aligned.pkl # (10Hz synchronized to LiDAR) Aligned silhouettes
│ │ │ └── 15-sync-000-Camera-Sils_raw.pkl # (10Hz synchronized to LiDAR) Estimated silhouettes without alignment
......
......
......
......
Modify the dataset_root
in configs/lidargait/lidargait_sustech1k.yaml
, and then run this command:
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 opengait/main.py --cfgs configs/lidargait/lidargait_sustech1k.yaml --phase train
Download the raw dataset from the official link. You will get two compressed files, i.e. DATASET_DOWNLOAD.md5
, SUSTeck1K-RAW.zip
, and SUSTeck1K-pkl.zip
.
We recommend using our provided pickle files for convenience, or process raw dataset into pickle by this command:
python datasets/SUSTech1K/pretreatment_SUSTech1K.py -i SUSTech1K-Released-2023 -o SUSTech1K-pkl -n 8
You can use our processed depth images, or you can process via the command:
python datasets/SUSTech1K/point2depth.py -i SUSTech1K-Released-2023/ -o SUSTech1K-Released-2023/ -n 8
We recommend using our provided depth images for convenience.