-
Notifications
You must be signed in to change notification settings - Fork 121
/
047_EVAL.py
33 lines (26 loc) · 1.24 KB
/
047_EVAL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#!/usr/bin/env python
'''
A solution to a ROSALIND bioinformatics problem.
Problem Title: Expected Number of Restriction Sites
Rosalind ID: EVAL
Rosalind #: 047
URL: http://rosalind.info/problems/eval/
'''
with open('data/rosalind_eval.txt') as input_data:
n, dna, gc_content = input_data.readlines()
n = int(n.strip())
dna = dna.strip()
gc_content = map(float, gc_content.split())
# Counts in the number of G/C codons in index 0 and A/T codons in index 1.
codon_count = [dna.count('C')+dna.count('G'), dna.count('A')+dna.count('T')]
# The number of slots where a substring of length len(dna) can appear in a dna string of length n.
substring_slots = n - len(dna) + 1
expected_substrings = []
for gc_value in gc_content:
# The probability the a randomly created dna sequence will with a specific GC content will match the given dna sequence.
dna_prob = ((0.5*gc_value)**codon_count[0])*((0.5*(1-gc_value))**codon_count[1])
# Expected values is additive, and we're adding the same probability for each possible slot, hence EV = dna_prob*substring_slots
expected_substrings.append(str(dna_prob*substring_slots))
print ' '.join(expected_substrings)
with open('output/047_EVAL.txt', 'w') as output_data:
output_data.write(' '.join(expected_substrings))