-
Notifications
You must be signed in to change notification settings - Fork 2
/
MolPropPred.py
468 lines (371 loc) · 14 KB
/
MolPropPred.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
# -*- coding: utf-8 -*-
## import libraries
from sklearn.model_selection import train_test_split
import pandas as pd
import numpy as np
import torch.nn.functional as F
import torch.optim as optim
import torch.nn as nn
import torch
from deepchem.feat.graph_features import *
from rdkit.Chem import AllChem
#from IPython.display import display
#from ipywidgets import FloatProgress
import deepchem as dc
from rdkit import Chem, DataStructs
from sklearn.preprocessing import MinMaxScaler, RobustScaler, StandardScaler
from collections import OrderedDict
import matplotlib.pyplot as plt
from torch.utils.tensorboard import SummaryWriter
from cycler import cycler
import sys
import os
# import wandb
# wandb.init(project="qm9", entity="qm9")
"""## Parameters """
# N = 10000# number of molecules in the dataset
N = 133885
D = 75 # hidden dimension of each atom
E = 6 # dimension of each edge
T = 3 # number of time steps the message phase will run for
P = 32 # dimensions of the output from the readout phase, the penultimate output before the target layer
V = 12 # dimensions of the molecular targets or tasks
# TRAIN_SIZE = 8000
TRAIN_SIZE = 100000
# VALID_SIZE = 1000
VALID_SIZE = 30000
# TEST_SIZE = 1000
TEST_SIZE = 1000
BATCH_SIZE = 16
NUM_EPOCHS = 40
save_path = 'weights.pth'
DF = np.random.uniform(0.01, 1)
LR = np.random.uniform(1e-5, 5e-4)
LF = DF * LR
# from google.colab import drive
# drive.mount('/content/gdrive')
print('decay factor : %.6f' % (DF))
print('initial learning rate : %.6f' % (LR))
print('final learning rate : %.6f' % (LF))
'''wandb.config = {
"learning_rate": LF,
"epochs": 30,
"batch_size": 16
}'''
# from google.colab import files
# uploaded = files.upload()
qm9 = pd.read_csv('data/qm9.csv')
qm9.head()
len(qm9)
# list = []
# for i in range(20001,30001):
# list.append(i)
# qm9 = qm9.iloc[list]
# len(list)
chemical_accuracy_dict = {'mu': [0.1],
'alpha': [0.1],
'homo': [0.043],
'lumo': [0.043],
'gap': [0.043],
'r2': [1.2],
'zpve': [0.0012],
'u0': [0.043],
'u298': [0.043],
'h298': [0.043],
'g298': [0.043],
'cv': [0.50]}
chemical_accuracy = pd.DataFrame(chemical_accuracy_dict)
chemical_accuracy
structures = ['smiles']
tasks = ['mu', 'alpha', 'homo', 'lumo', 'gap', 'r2',
'zpve', 'u0', 'u298', 'h298', 'g298', 'cv']
X = qm9[structures]
y = qm9[tasks]
y.head()
y.describe()
scaler = StandardScaler()
y = pd.DataFrame(scaler.fit_transform(y), index=y.index, columns=y.columns)
y.describe()
'''X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=TEST_SIZE, random_state=143)'''
X_train, X_val, y_train, y_val = train_test_split(
X, y, test_size=VALID_SIZE, random_state=143)
dfn = pd.DataFrame(columns=['col1', 'col2', 'col3', 'col4', 'col5',
'col6', 'col7', 'col8', 'col9', 'col10', 'col11', 'col12'])
dfn
"""## Code"""
def batch_mse_loss(pred, true):
return F.mse_loss(pred, true) / BATCH_SIZE
def valid_mse_loss(pred, true):
return (F.mse_loss(pred, true)).detach() / VALID_SIZE
scale_batch_to_train = BATCH_SIZE / TRAIN_SIZE
# what does this do?
class MasterEdge(nn.Module):
def __init__(self):
super(MasterEdge, self).__init__()
self.l1 = nn.Linear(D, P)
nn.init.kaiming_normal_(self.l1.weight)
self.l2 = nn.Linear(P, 2*E)
nn.init.kaiming_normal_(self.l2.weight)
self.l3 = nn.Linear(2*E, E)
nn.init.kaiming_normal_(self.l3.weight)
def forward(self, x):
return F.elu(self.l3(F.elu(self.l2(F.elu(self.l1(x))))))
master_edge_learner = MasterEdge()
# def dfs(adjacency_matrix,visited_array,i):
# visited_array[i] = 1
# for j in range(len(visited_array)):
# if(!visited_array[j] && adjacency_matrix[i][j]==1):
# dfs(adjacency_matrix,visited_matrix,j)
# printing all cycles in an undirected graph
# Function to mark the vertex with different colors for different cycles
def dfs_cycle(u, p, color, mark, par, cyclenumber, g):
# already (completely) visited vertex.
if(color[u] == 2):
return
# seen vertex, but was not completely visited -> cycle detected.
# backtrack based on parents to find the complete cycle.
if(color[u] == 1):
cyclenumber = cyclenumber + 1
cur = p
mark[cur] = cyclenumber
# backtrack the vertex which are
# in the current cycle thats found
while(cur != u):
# print(cur,u)
cur = par[cur]
mark[cur] = cyclenumber
return
par[u] = p
# partially visited.
color[u] = 1
# simple dfs on graph
for j in range(len(g[u])):
if(g[u][j][1] == par[u]):
continue
dfs_cycle(g[u][j][1], u, color, mark, par, cyclenumber, g)
# completely visited
color[u] = 2
# function to print all cycles
def cycles_list_function(edges_1, mark, cycle_number, cycles):
# push the edges that into the cycle adjacency list
for i in range(edges_1):
if(mark[i] != 0):
# print(mark[i],i)
cycles[mark[i]].append(i)
# for i in range(cycle_number+1):
# print(cycles[i])
def construct_multigraph(smile):
g = OrderedDict({})
h = OrderedDict({})
#h[-1] = 0
molecule = Chem.MolFromSmiles(smile)
#mol_matrix = [['0','1','0','0','0'],['1','0','2','0','1'],['0','2','0','1','1'],['0','0','1','0','0'],['0','1','1','0','0']]
for i in range(molecule.GetNumAtoms()):
atom_i = molecule.GetAtomWithIdx(i)
atom_i_featurized = dc.feat.graph_features.atom_features(atom_i)
atom_i_tensorized = torch.FloatTensor(atom_i_featurized).view(1, D)
h[i] = atom_i_tensorized
#h[-1] += h[i]
master_edge = master_edge_learner(h[i])
g.setdefault(i, [])
# .append((master_edge, -1))
#g.setdefault(-1, [])
# .append((master_edge, i))
for j in range(molecule.GetNumAtoms()):
bond_ij = molecule.GetBondBetweenAtoms(i, j)
if bond_ij: # bond_ij is None when there is no bond.
#atom_j = molecule.GetAtomWithIdx(j)
#atom_j_featurized = dc.feat.graph_features.atom_features(atom_j)
#atom_j_tensorized = torch.FloatTensor(atom_j_featurized).view(1, 75)
bond_ij_featurized = dc.feat.graph_features.bond_features(
bond_ij).astype(int)
bond_ij_tensorized = torch.FloatTensor(
bond_ij_featurized).view(1, E)
g.setdefault(i, []).append((bond_ij_tensorized, j))
# novelty
edges = molecule.GetNumBonds()
mark = [0]*molecule.GetNumAtoms()
par = [-2]*molecule.GetNumAtoms()
color = [0]*molecule.GetNumAtoms()
cyclenumber = 0
cycles_list = [[], [], []]
dfs_cycle(0, -1, color, mark, par, cyclenumber, g)
cycles_list_function(molecule.GetNumAtoms(), mark, max(mark), cycles_list)
# print(max(mark))
num_of_atoms = molecule.GetNumBonds()
for i in range(len(cycles_list)):
if(len(cycles_list[i]) >= 3):
h[len(h)] = 0
for j in range(len(cycles_list[i])):
# print(len(h)-1)
h[len(h)-1] += h[cycles_list[i][j]] # semi master node
master_edge = master_edge_learner(h[cycles_list[i][j]])
g[cycles_list[i][j]].append((master_edge, len(h)-1))
g.setdefault(
len(h)-1, []).append((master_edge, cycles_list[i][j]))
h[-1] = 0
# print(cycles_list)
for x in range(num_of_atoms, len(h)-1):
# print(len(h))
h[-1] += h[x]
master_edge = master_edge_learner(h[x])
g[x].append((master_edge, -1))
g.setdefault(-1, []).append((master_edge, x))
return g, h
class EdgeMappingNeuralNetwork(nn.Module):
def __init__(self):
super(EdgeMappingNeuralNetwork, self).__init__()
self.fc1 = nn.Linear(E, D)
nn.init.kaiming_normal_(self.fc1.weight)
self.fc2 = nn.Linear(1, D)
nn.init.kaiming_normal_(self.fc2.weight)
def f1(self, x):
return F.elu(self.fc1(x))
def f2(self, x):
return F.elu(self.fc2(x.permute(1, 0)))
def forward(self, x):
return self.f2(self.f1(x))
class MessagePhase(nn.Module):
def __init__(self):
super(MessagePhase, self).__init__()
self.A = EdgeMappingNeuralNetwork()
self.U = {i: nn.GRUCell(D, D) for i in range(T)}
def forward(self, smile):
g, h = construct_multigraph(smile)
g0, h0 = construct_multigraph(smile)
for k in range(T):
h = OrderedDict(
{
v:
self.U[k](
sum(torch.matmul(h[w], self.A(e_vw))
for e_vw, w in en),
h[v]
)
for v, en in g.items()
}
)
return h, h0
class Readout(nn.Module):
def __init__(self):
super(Readout, self).__init__()
self.i1 = nn.Linear(2*D, 2*P)
nn.init.kaiming_normal_(self.i1.weight)
self.i2 = nn.Linear(2*P, P)
nn.init.kaiming_normal_(self.i2.weight)
self.j1 = nn.Linear(D, P)
nn.init.kaiming_normal_(self.j1.weight)
def i(self, h_v, h0_v):
return F.elu(self.i2(F.elu(self.i1(torch.cat([h_v, h0_v], dim=1)))))
def j(self, h_v):
return F.elu(self.j1(h_v))
def r(self, h, h0):
return sum(torch.sigmoid(self.i(h[v], h0[v])) * self.j(h[v]) for v in h.keys())
def forward(self, h, h0):
return self.r(h, h0)
class MPNN(nn.Module):
def __init__(self):
super(MPNN, self).__init__()
self.M = MessagePhase()
self.R = Readout()
self.p1 = nn.Linear(P, P)
nn.init.kaiming_normal_(self.p1.weight)
self.p2 = nn.Linear(P, P)
nn.init.kaiming_normal_(self.p2.weight)
self.p3 = nn.Linear(P, V)
nn.init.kaiming_normal_(self.p3.weight)
def p(self, ro):
return F.elu(self.p3(F.elu(self.p2(F.elu(self.p1(ro))))))
def forward(self, smile):
h, h0 = self.M(smile)
embed = self.R(h, h0)
return self.p(embed)
model = MPNN()
optimizer = optim.Adam(model.parameters(), lr=LR)
# construct_multigraph("C1(C)C(Br)C1")
y_loss = {} # loss history
y_loss['train'] = []
y_loss['val'] = []
y_acc = {}
for i in range(len(tasks)):
y_acc[tasks[i]] = []
x_epoch = []
#cm = plt.get_cmap('gist_rainbow')
fig = plt.figure()
ax0 = fig.add_subplot(121, title="loss")
ax1 = fig.add_subplot(122, title="error")
#ax1.set_color_cycle([cm(1.*i/len(tasks)) for i in range(len(tasks))])
colors = plt.cm.Spectral(np.linspace(0, 1, len(tasks)))
ax1.set_prop_cycle('color', colors)
def draw_curve(current_epoch):
x_epoch.append(current_epoch)
ax0.plot(x_epoch, y_loss['train'], 'bo-', label='train')
ax0.plot(x_epoch, y_loss['val'], 'ro-', label='val')
for i in range(len(tasks)):
ax1.plot(x_epoch, y_acc[tasks[i]], label=tasks[i])
if current_epoch == 0:
ax0.legend()
ax1.legend()
fig.savefig(os.path.join('./lossGraphs', 'train.jpg'))
for epoch in range(NUM_EPOCHS):
print("epoch [%d/%d]" % (epoch+1, NUM_EPOCHS))
train_loss = 0
'''train_bar = FloatProgress(min=0, max=TRAIN_SIZE)
display(train_bar)'''
for batch in range(0, TRAIN_SIZE, BATCH_SIZE):
batch_loss = 0
optimizer.zero_grad()
for sample in range(BATCH_SIZE):
# print(index)
index = sample + batch
print(index)
smile = X_train.iloc[index]['smiles']
# print('beep1')
y_hat = model(smile)
# print('beep1')
y_tru = torch.Tensor(y_train.iloc[index].values.reshape(1, V))
print("y_train[index]: ", y_train.iloc[index])
y_hat1 = y_hat
print("y_hat: ", y_hat1.reshape(V, 1))
# df.loc[len(df)] = y_hat
if(epoch == 2):
y_hat1 = y_hat.detach().numpy()
df1 = pd.DataFrame(y_hat1, columns=[
'col1', 'col2', 'col3', 'col4', 'col5', 'col6', 'col7', 'col8', 'col9', 'col10', 'col11', 'col12'])
dfn = dfn.append(df1)
batch_loss += batch_mse_loss(y_hat, y_tru)
#train_bar.value += 1
train_loss += (batch_loss * scale_batch_to_train).detach()
batch_loss.backward()
optimizer.step()
valid_loss = 0
accu_check = 0
correct = 0
'''valid_bar = FloatProgress(min=0, max=VALID_SIZE)
display(valid_bar)'''
for sample in range(VALID_SIZE):
index = sample
smile = X_val.iloc[index]['smiles']
y_hat = model(smile)
y_tru = torch.Tensor(y_val.iloc[index].values.reshape(1, V))
valid_loss += valid_mse_loss(y_hat, y_tru)
correct += (y_tru == y_hat).sum().item()
accu_check += np.abs(scaler.inverse_transform(y_hat.detach()) -
scaler.inverse_transform(y_tru.detach())) / VALID_SIZE
#valid_bar.value += 1
print('train_loss [%4.2f]' % (train_loss.item()))
print('valid_loss [%4.2f]' % (valid_loss.item()))
y_loss['train'].append(train_loss.item())
y_loss['val'].append(valid_loss.item())
for i in range(len(tasks)):
y_acc[tasks[i]].append(accu_check[0][i])
draw_curve(epoch)
'''wandb.log({"loss": train_loss, "validation loss": valid_loss, tasks[0]: accu_check[0][0], tasks[1]: accu_check[0][1],
tasks[2]: accu_check[0][2], tasks[3]: accu_check[0][3], tasks[4]: accu_check[0][4],
tasks[5]: accu_check[0][5], tasks[6]: accu_check[0][6], tasks[7]: accu_check[0][7],
tasks[8]: accu_check[0][8], tasks[9]: accu_check[0][9], tasks[10]: accu_check[0][10],
tasks[11]: accu_check[0][11]})
wandb.watch(model)'''
torch.save(model.state_dict(), save_path)
print(accu_check)