-
Notifications
You must be signed in to change notification settings - Fork 0
/
mstPrims.c
60 lines (60 loc) · 1.5 KB
/
mstPrims.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#include <stdio.h>
#include <limits.h>
#include<stdbool.h>
#define V 5
int minKey(int key[], bool mstSet[])
{
int v;
int min = INT_MAX, min_index;
for (v = 0; v < V; v++)
if (mstSet[v] == false && key[v] < min)
min = key[v], min_index = v;
return min_index;
}
int printMST(int parent[], int n, int graph[V][V])
{
int i;
printf("Edge \tWeight\n");
for (i = 1; i < V; i++)
printf("%d - %d \t%d \n", parent[i], i, graph[i][parent[i]]);
}
void primMST(int graph[V][V])
{
int parent[V];
int key[V];
bool mstSet[V];
int i;
for (i = 0; i < V; i++)
key[i] = INT_MAX, mstSet[i] = false;
key[0] = 0;
parent[0] = -1; // First node is always root of MST
int count;
int u,v;
for (count = 0; count < V-1; count++)
{
u = minKey(key, mstSet);
mstSet[u] = true;
for (v = 0; v < V; v++)
if (graph[u][v] && mstSet[v] == false && graph[u][v]<key[v])
parent[v] = u, key[v] = graph[u][v];
}
printMST(parent, V, graph);
}
int main()
{
/* Let us create the following graph
2 3
(0)--(1)--(2)
| / \ |
6| 8/ \5 |7
| / \ |
(3)-------(4)
9 */
int graph[V][V] = {{0, 2, 0, 6, 0},
{2, 0, 3, 8, 5},
{0, 3, 0, 0, 7},
{6, 8, 0, 0, 9},
{0, 5, 7, 9, 0}};
primMST(graph);
return 0;
}