Michael Hobley, Victor Adrian Prisacariu.
Active Vision Lab (AVL), University of Oxford.
We provide a environment.yml
file to set up a conda
environment:
git clone https://github.com/ActiveVisionLab/LearningToCountAnything.git
cd LearningToCountAnything
conda env create -f environment.yml
The data is the same as in Learning To Count Everything, Ranjan et al. as are the annotation, image class and train/test/val split files we include.
Dowload FSC-147 Images and the precomputed density maps.
If you are not using data/
then specify your data_path directory in configs/_DEFAULT. yml
.
data/FSC-147
├── annotation_FSC147_384.json
├── ImageClasses_FSC147.txt
├── gt_density_map_adaptive_384_VarV2
│ ├── 2.npy
│ ├── 3.npy
│ ├── ...
├── images_384_VarV2
│ ├── 2.jpg
│ ├── 3.jpg
│ ├── ...
└── Train_Test_Val_FSC_147.json
As discussed in the paper, we found FSC-147 contained 448 non-unique images. Some of the duplicated images appear with different associated counts, and/or in the training set and one of the validation or testing sets. We propose FSC-133, which removes these errors, ambiguities, and repeated images from FSC-147.
As FSC-133 is a subset of FSC-147 the images and precomputed density maps are as above. The annotations, class labels and data splits have been updated.
data/FSC-133
├── annotation_FSC133_384.json
├── ImageClasses_FSC133.txt
├── gt_density_map_adaptive_384_VarV2
│ ├── 2.npy
│ ├── 3.npy
│ ├── ...
├── images_384_VarV2
│ ├── 2.jpg
│ ├── 3.jpg
│ ├── ...
└── Train_Test_Val_FSC_133.json
python main.py --config example
To test a trained model on the validation set:
python main.py --config example --val
To test a trained model on the test set:
python main.py --config example --test
If you find the code or FSC-133 useful, please cite:
@article{hobley2022-LTCA,
title={Learning to Count Anything: Reference-less Class-agnostic Counting with Weak Supervision},
author={Hobley, Michael and Prisacariu, Victor},
journal={arXiv preprint arXiv:2205.10203},
year={2022}
}