-
Notifications
You must be signed in to change notification settings - Fork 31
/
midi_model.py
250 lines (227 loc) · 11.3 KB
/
midi_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import json
from typing import Union, Dict, Any
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import tqdm
from peft import PeftConfig, LoraModel, load_peft_weights, set_peft_model_state_dict
from transformers import LlamaModel, LlamaConfig, DynamicCache, PretrainedConfig, PreTrainedModel
from midi_tokenizer import MIDITokenizerV1, MIDITokenizerV2, MIDITokenizer
config_name_list = ["tv1-medium", "tv2-medium", "tv2o-medium", "tv2-large", "tv2o-large"]
class MIDIModelConfig(PretrainedConfig):
model_type = "midi_model"
def __init__(self,
tokenizer: Union[MIDITokenizerV1, MIDITokenizerV2, Dict]=None,
net_config: Union[LlamaConfig, Dict]=None,
net_token_config: Union[LlamaConfig, Dict]=None,
**kwargs):
super().__init__(**kwargs)
if tokenizer:
if isinstance(tokenizer, dict):
self.tokenizer = MIDITokenizer(tokenizer["version"])
self.tokenizer.set_optimise_midi(tokenizer["optimise_midi"])
else:
self.tokenizer = tokenizer
else:
self.tokenizer = MIDITokenizer()
if net_config:
if isinstance(net_config, dict):
self.net_config = LlamaConfig(**net_config)
else:
self.net_config = net_config
else:
self.net_config = LlamaConfig()
if net_token_config:
if isinstance(net_token_config, dict):
self.net_token_config = LlamaConfig(**net_token_config)
else:
self.net_token_config = net_token_config
else:
self.net_token_config = LlamaConfig()
self.n_embd = self.net_token_config.hidden_size
def to_dict(self) -> Dict[str, Any]:
d = super().to_dict()
d["tokenizer"] = self.tokenizer.to_dict()
return d
def __str__(self):
d = {
"net": self.net_config.to_json_string(use_diff=False),
"net_token": self.net_token_config.to_json_string(use_diff=False)
}
return json.dumps(d, indent=4)
@staticmethod
def get_config(tokenizer_ver="v2", optimise_midi=True, n_layer=12, n_head=16, n_embd=1024, n_inner=4096):
tokenizer = MIDITokenizer(tokenizer_ver)
tokenizer.set_optimise_midi(optimise_midi)
net_config = LlamaConfig(vocab_size=tokenizer.vocab_size,
hidden_size=n_embd, num_attention_heads=n_head,
num_hidden_layers=n_layer, intermediate_size=n_inner,
pad_token_id=tokenizer.pad_id, max_position_embeddings=4096,
use_cache=False)
net_token_config = LlamaConfig(vocab_size=tokenizer.vocab_size,
hidden_size=n_embd, num_attention_heads=n_head // 4,
num_hidden_layers=n_layer // 4, intermediate_size=n_inner // 4,
pad_token_id=tokenizer.pad_id, max_position_embeddings=4096,
use_cache=False)
return MIDIModelConfig(tokenizer, net_config, net_token_config)
@staticmethod
def from_name(name="tv2o-medium"):
tv, size = name.split("-")
tv = tv[1:]
if tv[-1] == "o":
o = True
tv = tv[:-1]
else:
o = False
if tv not in ["v1", "v2"]:
raise ValueError(f"Unknown tokenizer version {tv}")
if size == "medium":
return MIDIModelConfig.get_config(tokenizer_ver=tv, optimise_midi=o,
n_layer=12, n_head=16, n_embd=1024, n_inner=4096)
elif size == "large":
return MIDIModelConfig.get_config(tokenizer_ver=tv, optimise_midi=o,
n_layer=24, n_head=16, n_embd=1024, n_inner=4096)
else:
raise ValueError(f"Unknown model size {size}")
class MIDIModel(PreTrainedModel):
config_class = MIDIModelConfig
def __init__(self, config: MIDIModelConfig, *args, **kwargs):
super(MIDIModel, self).__init__(config, *args, **kwargs)
self.tokenizer = config.tokenizer
self.net = LlamaModel(config.net_config)
self.net_token = LlamaModel(config.net_token_config)
self.lm_head = nn.Linear(config.n_embd, self.tokenizer.vocab_size, bias=False)
def load_merge_lora(self, model_id):
peft_config = PeftConfig.from_pretrained(model_id)
model = LoraModel(self, peft_config, adapter_name="default")
adapter_state_dict = load_peft_weights(model_id, device=str(self.device))
set_peft_model_state_dict(self, adapter_state_dict, "default")
return model.merge_and_unload()
def forward_token(self, hidden_state=None, x=None, cache=None):
"""
:param hidden_state: (batch_size, n_embd)
:param x: (batch_size, token_sequence_length)
:param cache: Cache
:return: (batch_size, 1 + token_sequence_length, vocab_size)
"""
if hidden_state is not None:
#if you use cache, you don't need to pass in hidden_state
hidden_state = hidden_state.unsqueeze(1) # (batch_size, 1, n_embd)
if x is not None:
x = self.net_token.embed_tokens(x)
if hidden_state is not None:
x = torch.cat([hidden_state, x], dim=1)
hidden_state = x
hidden_state = self.net_token.forward(inputs_embeds=hidden_state,
past_key_values=cache,
use_cache=cache is not None).last_hidden_state
return self.lm_head(hidden_state)
def forward(self, x, cache = None):
"""
:param x: (batch_size, midi_sequence_length, token_sequence_length)
:param cache: Cache
:return: hidden (batch_size, midi_sequence_length, n_embd)
"""
# merge token sequence
x = self.net.embed_tokens(x)
x = x.sum(dim=-2)
x = self.net.forward(inputs_embeds=x,
past_key_values=cache,
use_cache=cache is not None)
return x.last_hidden_state
def sample_top_p_k(self, probs, p, k, generator=None):
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
probs_sum = torch.cumsum(probs_sort, dim=-1)
mask = probs_sum - probs_sort > p
probs_sort[mask] = 0.0
mask = torch.zeros(probs_sort.shape[-1], device=probs_sort.device)
mask[:k] = 1
probs_sort = probs_sort * mask
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
shape = probs_sort.shape
next_token = torch.multinomial(probs_sort.reshape(-1, shape[-1]),
num_samples=1, generator=generator).reshape(*shape[:-1], 1)
next_token = torch.gather(probs_idx, -1, next_token).reshape(*shape[:-1])
return next_token
@torch.inference_mode()
def generate(self, prompt=None, batch_size=1, max_len=512, temp=1.0, top_p=0.98, top_k=20, generator=None):
tokenizer = self.tokenizer
max_token_seq = tokenizer.max_token_seq
if prompt is None:
input_tensor = torch.full((1, max_token_seq), tokenizer.pad_id, dtype=torch.long, device=self.device)
input_tensor[0, 0] = tokenizer.bos_id # bos
input_tensor = input_tensor.unsqueeze(0)
input_tensor = torch.cat([input_tensor] * batch_size, dim=0)
else:
if len(prompt.shape) == 2:
prompt = prompt[None, :]
prompt = np.repeat(prompt, repeats=batch_size, axis=0)
elif prompt.shape[0] == 1:
prompt = np.repeat(prompt, repeats=batch_size, axis=0)
elif len(prompt.shape) != 3 or prompt.shape[0] != batch_size:
raise ValueError(f"invalid shape for prompt, {prompt.shape}")
prompt = prompt[..., :max_token_seq]
if prompt.shape[-1] < max_token_seq:
prompt = np.pad(prompt, ((0, 0), (0, 0), (0, max_token_seq - prompt.shape[-1])),
mode="constant", constant_values=tokenizer.pad_id)
input_tensor = torch.from_numpy(prompt).to(dtype=torch.long, device=self.device)
cur_len = input_tensor.shape[1]
bar = tqdm.tqdm(desc="generating", total=max_len - cur_len)
cache1 = DynamicCache()
past_len = 0
with bar:
while cur_len < max_len:
end = [False] * batch_size
hidden = self.forward(input_tensor[:, past_len:], cache=cache1)[:, -1]
next_token_seq = None
event_names = [""] * batch_size
cache2 = DynamicCache()
for i in range(max_token_seq):
mask = torch.zeros((batch_size, tokenizer.vocab_size), dtype=torch.int64, device=self.device)
for b in range(batch_size):
if end[b]:
mask[b, tokenizer.pad_id] = 1
continue
if i == 0:
mask[b, list(tokenizer.event_ids.values()) + [tokenizer.eos_id]] = 1
else:
param_names = tokenizer.events[event_names[b]]
if i > len(param_names):
mask[b, tokenizer.pad_id] = 1
continue
mask[b, tokenizer.parameter_ids[param_names[i - 1]]] = 1
mask = mask.unsqueeze(1)
x = next_token_seq
if i != 0:
# cached
hidden = None
x = x[:, -1:]
logits = self.forward_token(hidden, x, cache=cache2)[:, -1:]
scores = torch.softmax(logits / temp, dim=-1) * mask
samples = self.sample_top_p_k(scores, top_p, top_k, generator=generator)
if i == 0:
next_token_seq = samples
for b in range(batch_size):
if end[b]:
continue
eid = samples[b].item()
if eid == tokenizer.eos_id:
end[b] = True
else:
event_names[b] = tokenizer.id_events[eid]
else:
next_token_seq = torch.cat([next_token_seq, samples], dim=1)
if all([len(tokenizer.events[event_names[b]]) == i for b in range(batch_size) if not end[b]]):
break
if next_token_seq.shape[1] < max_token_seq:
next_token_seq = F.pad(next_token_seq, (0, max_token_seq - next_token_seq.shape[1]),
"constant", value=tokenizer.pad_id)
next_token_seq = next_token_seq.unsqueeze(1)
input_tensor = torch.cat([input_tensor, next_token_seq], dim=1)
past_len = cur_len
cur_len += 1
bar.update(1)
if all(end):
break
return input_tensor.cpu().numpy()