-
Notifications
You must be signed in to change notification settings - Fork 0
/
model_main.py
101 lines (89 loc) · 3.85 KB
/
model_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Binary to run train and evaluation on object detection model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import flags
import tensorflow as tf
from object_detection import model_hparams
from object_detection import model_lib
flags.DEFINE_string(
'model_dir', None, 'Path to output model directory '
'where event and checkpoint files will be written.')
flags.DEFINE_string('pipeline_config_path', None, 'Path to pipeline config '
'file.')
flags.DEFINE_integer('num_train_steps', None, 'Number of train steps.')
flags.DEFINE_integer('num_eval_steps', None, 'Number of train steps.')
flags.DEFINE_string(
'hparams_overrides', None, 'Hyperparameter overrides, '
'represented as a string containing comma-separated '
'hparam_name=value pairs.')
flags.DEFINE_string(
'checkpoint_dir', None, 'Path to directory holding a checkpoint. If '
'`checkpoint_dir` is provided, this binary operates in eval-only mode, '
'writing resulting metrics to `model_dir`.')
flags.DEFINE_boolean(
'run_once', False, 'If running in eval-only mode, whether to run just '
'one round of eval vs running continuously (default).'
)
flags.DEFINE_boolean('eval_training_data', False,
'If training data should be evaluated for this job.')
FLAGS = flags.FLAGS
def main(unused_argv):
flags.mark_flag_as_required('model_dir')
flags.mark_flag_as_required('pipeline_config_path')
config = tf.estimator.RunConfig(model_dir=FLAGS.model_dir)
train_and_eval_dict = model_lib.create_estimator_and_inputs(
run_config=config,
hparams=model_hparams.create_hparams(FLAGS.hparams_overrides),
pipeline_config_path=FLAGS.pipeline_config_path,
train_steps=FLAGS.num_train_steps,
eval_steps=FLAGS.num_eval_steps)
estimator = train_and_eval_dict['estimator']
train_input_fn = train_and_eval_dict['train_input_fn']
eval_input_fn = train_and_eval_dict['eval_input_fn']
eval_on_train_input_fn = train_and_eval_dict['eval_on_train_input_fn']
predict_input_fn = train_and_eval_dict['predict_input_fn']
train_steps = train_and_eval_dict['train_steps']
eval_steps = train_and_eval_dict['eval_steps']
if FLAGS.checkpoint_dir:
if FLAGS.eval_training_data:
name = 'training_data'
input_fn = eval_on_train_input_fn
else:
name = 'validation_data'
input_fn = eval_input_fn
if FLAGS.run_once:
estimator.evaluate(input_fn,
eval_steps,
checkpoint_path=tf.train.latest_checkpoint(
FLAGS.checkpoint_dir))
else:
model_lib.continuous_eval(estimator, FLAGS.model_dir, input_fn,
eval_steps, train_steps, name)
else:
train_spec, eval_specs = model_lib.create_train_and_eval_specs(
train_input_fn,
eval_input_fn,
eval_on_train_input_fn,
predict_input_fn,
train_steps,
eval_steps,
eval_on_train_data=False)
# Currently only a single Eval Spec is allowed.
tf.estimator.train_and_evaluate(estimator, train_spec, eval_specs[0])
if __name__ == '__main__':
tf.app.run()