-
Notifications
You must be signed in to change notification settings - Fork 1
/
evaluations.py
103 lines (82 loc) · 2.86 KB
/
evaluations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
'''
Adapted from https://github.com/lupantech/ScienceQA
'''
import re
from rouge import Rouge
from nltk.translate.bleu_score import sentence_bleu
from sentence_transformers import util
########################
## BLEU
########################
def tokenize(text):
tokens = re.split(r'\s|\.', text)
tokens = [t for t in tokens if len(t) > 0]
return tokens
def bleu_score(reference, hypothesis, gram):
reference_tokens = tokenize(reference)
hypothesis_tokens = tokenize(hypothesis)
if gram == 1:
bleu = sentence_bleu([reference_tokens], hypothesis_tokens, (1., )) # BELU-1
elif gram == 2:
bleu = sentence_bleu([reference_tokens], hypothesis_tokens, (1. / 2., 1. / 2.)) # BELU-2
elif gram == 3:
bleu = sentence_bleu([reference_tokens], hypothesis_tokens, (1. / 3., 1. / 3., 1. / 3.)) # BELU-3
elif gram == 4:
bleu = sentence_bleu([reference_tokens], hypothesis_tokens, (1. / 4., 1. / 4., 1. / 4., 1. / 4.)) # BELU-4
return bleu
def caculate_bleu(results, data, gram):
bleus = []
for qid, output in results.items():
prediction = output
target = data[qid]
# target = data[qid]['lecture'] + data[qid]['solution']
target = target.strip()
if target == "":
continue
bleu = bleu_score(target, prediction, gram)
bleus.append(bleu)
avg_bleu = sum(bleus) / len(bleus)
return avg_bleu
########################
## Rouge-L
########################
def score_rouge(str1, str2):
rouge = Rouge(metrics=["rouge-l"])
scores = rouge.get_scores(str1, str2, avg=True)
rouge_l = scores['rouge-l']['f']
return rouge_l
def caculate_rouge(results, data):
rouges = []
for qid, output in results.items():
prediction = output
target = data[qid]
# target = data[qid]['lecture'] + data[qid]['solution']
target = target.strip()
if prediction == "":
continue
if target == "":
continue
rouge = score_rouge(target, prediction)
rouges.append(rouge)
avg_rouge = sum(rouges) / len(rouges)
return avg_rouge
########################
## Sentence Similarity
########################
def similariry_score(str1, str2, model):
# compute embedding for both lists
embedding_1 = model.encode(str1, convert_to_tensor=True)
embedding_2 = model.encode(str2, convert_to_tensor=True)
score = util.pytorch_cos_sim(embedding_1, embedding_2).item()
return score
def caculate_similariry(results, data, model):
scores = []
for qid, output in results.items():
prediction = output
target = data[qid]
# target = data[qid]['lecture'] + data[qid]['solution']
target = target.strip()
score = similariry_score(target, prediction, model)
scores.append(score)
avg_score = sum(scores) / len(scores)
return avg_score