-
Notifications
You must be signed in to change notification settings - Fork 8
/
train_on_simulation.py
executable file
·254 lines (216 loc) · 11.1 KB
/
train_on_simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
from typing import List
import os
import time
import argparse
from argparse import Namespace
import logging
from scipy import sparse as sp #type: ignore
import numpy as np #type: ignore
from sklearn.utils.extmath import randomized_svd #type: ignore
from tqdm import tqdm #type: ignore
import pandas as pd #type: ignore
from scipy import sparse as sp #type: ignore
import torch #type: ignore
from acgan.module import *
from acgan.recommender import *
def frame2mat(df, num_u, num_i):
row, col = df.uidx, df.iidx
data = np.ones(len(row))
mat = sp.csr_matrix((data, (row, col)), shape=(num_u, num_i))
return mat
def main(args: Namespace):
ratings = pd.read_feather(os.path.join(args.data_path, args.data_name + '_smaple'))
user_num, item_num = ratings.uidx.max() + 1, ratings.iidx.max() + 1
#df = pd.read_feather(os.path.join(args.sim_path, f'{args.prefix}_sim_full.feather'))
tr_df = pd.read_feather(os.path.join(args.sim_path, f'{args.prefix}_sim_train.feather'))
val_df = pd.read_feather(os.path.join(args.sim_path, f'{args.prefix}_sim_val.feather'))
te_df = pd.read_feather(os.path.join(args.sim_path, f'{args.prefix}_sim_test.feather'))
if args.tune_mode:
tr_df = pd.concate([tr_df, val_df])
te_df = te_df
else:
tr_df = tr_df
te_df = val_df
past_hist = tr_df.groupby('uidx').apply(lambda x: set(x.iidx)).to_dict()
item_cnt_dict = tr_df.groupby('iidx').count().uidx.to_dict()
item_cnt = np.array([item_cnt_dict.get(iidx, 0) for iidx in range(item_num)])
logger.info(f'test data size: {te_df.shape}')
dim=args.dim
rel_factor = FactorModel(user_num, item_num, dim)
PATH = os.path.join(args.sim_path, f'{args.prefix}_rel.pt')
rel_factor.load_state_dict(torch.load(PATH))
rel_factor.eval()
train_expo_factor = FactorModel(user_num, item_num, dim)
PATH = os.path.join(args.sim_path, f'{args.prefix}_expo.pt')
train_expo_factor.load_state_dict(torch.load(PATH))
train_expo_factor.eval()
train_expo_factor = NoiseFactor(train_expo_factor, args.dim)
train_expo_factor = train_expo_factor.to(torch.device(f'cuda:{args.cuda_idx}'))
train_expo_factor.load_state_dict(torch.load(os.path.join(args.sim_path, f'{args.prefix}_expo_noise.pt')))
train_expo_factor.eval()
expo_factor = FactorModel(user_num, item_num, dim)
PATH = os.path.join(args.sim_path, f'{args.prefix}_expo_bs.pt')
expo_factor.load_state_dict(torch.load(PATH))
expo_factor.eval()
rating_model = RatingEstimator(user_num, item_num, rel_factor)
expo_model = ClassRecommender(user_num, item_num, expo_factor)
tr_mat = frame2mat(tr_df, user_num, item_num)
val_mat = frame2mat(val_df, user_num, item_num)
choices = args.models
logging.info(f'Running {choices}')
def get_model(model_str, user_num, item_num, factor_num):
if model_str == 'mlp':
return MLPRecModel(user_num, item_num, factor_num)
elif model_str == 'gmf':
return FactorModel(user_num, item_num, factor_num)
elif model_str == 'ncf':
return NCFModel(user_num, item_num, factor_num)
else:
raise NotImplementedError(f'{model_str} is not implemented')
logging.info('-------The Popularity model-------')
pop_factor = PopularModel(item_cnt)
pop_model = PopRecommender(pop_factor)
logger.info('unbiased eval for plian popular model on test')
unbiased_eval(user_num, item_num, te_df, pop_model, epsilon=args.epsilon,
rel_model=rating_model, past_hist=past_hist, expo_model=expo_model, expo_compound=args.p)
logger.info('-------The SVD model---------')
sv = SVDRecommender(tr_mat.shape[0], tr_mat.shape[1], dim)
logger.info(f'model with dimension {dim}')
sv.fit(tr_mat)
logger.info('un-biased eval for SVD model on test')
unbiased_eval(user_num, item_num, te_df, sv, epsilon=args.epsilon,
rel_model=rating_model, past_hist=past_hist, expo_model=expo_model, expo_compound=args.p)
def complete_experiment(model_str, user_num, item_num, dim):
logging.info(f'-------The {model_str} model-------')
base_factor = get_model(model_str, user_num=user_num, item_num=item_num, factor_num=dim)
base_model =ClassRecommender(user_num, item_num, base_factor)
base_model.fit(tr_df,
num_epochs=args.epoch,
cuda=args.cuda_idx,
decay=1e-8,
num_neg=args.num_neg,
past_hist=past_hist,
lr=args.lr)
logger.info(f'unbiased eval for {model_str} model on test')
unbiased_eval(user_num, item_num, te_df, base_model, epsilon=args.epsilon,
rel_model=rating_model, past_hist=past_hist, expo_model=expo_model, expo_compound=args.p)
logging.info(f'-------The {model_str} Pop Adjust model-------')
pop_adjust_factor = get_model(model_str, user_num=user_num, item_num=item_num, factor_num=dim)
pop_adjust_model = ClassRecommender(user_num, item_num, pop_adjust_factor, pop_factor, expo_thresh=0.1)
pop_adjust_model.fit(tr_df,
num_epochs=args.epoch,
cuda=args.cuda_idx,
decay=args.decay,
num_neg=args.num_neg,
past_hist=past_hist,
lr=args.lr)
logger.info(f'unbiased eval for adjust {model_str} with popular model on test')
unbiased_eval(user_num, item_num, te_df, pop_adjust_model, epsilon=args.epsilon,
rel_model=rating_model, past_hist=past_hist, expo_model=expo_model, expo_compound=args.p)
del pop_adjust_factor
logging.info(f'-------The {model_str} Mirror Adjust model-------')
adjust_factor = get_model(model_str, user_num=user_num, item_num=item_num, factor_num=dim)
adjust_model = ClassRecommender(user_num, item_num, adjust_factor, base_factor, expo_thresh=0.1)
adjust_model.fit(tr_df,
num_epochs=args.epoch,
cuda=args.cuda_idx,
num_neg=args.num_neg,
past_hist=past_hist,
decay=args.decay,
lr=args.lr)
logger.info(f'un-biased eval for {model_str} mirror adjusted model')
unbiased_eval(user_num, item_num, te_df, adjust_model, epsilon=args.epsilon,
rel_model=rating_model, past_hist=past_hist, expo_model=expo_model, expo_compound=args.p)
del adjust_factor
logger.info(f'-------The {model_str} Oracle Adjust model---------')
oracle_factor = get_model(model_str, user_num=user_num, item_num=item_num, factor_num=dim)
oracle_model = ClassRecommender(user_num,
item_num, oracle_factor, train_expo_factor, expo_thresh=0.1, expo_compound=args.p)
oracle_model.fit(tr_df,
num_epochs=args.epoch,
cuda=args.cuda_idx,
num_neg=args.num_neg,
past_hist=past_hist,
decay=args.decay,
lr=args.lr)
logger.info('un-biased eval for oracle model on test')
unbiased_eval(user_num, item_num, te_df, oracle_model, epsilon=args.epsilon,
rel_model=rating_model, past_hist=past_hist, expo_model=expo_model, expo_compound=args.p)
del oracle_factor
for model_str in choices:
if model_str != 'acgan':
complete_experiment(model_str, user_num, item_num, dim)
if 'acgan' in choices:
logger.info('-------The AC GAN model---------')
f = get_model(args.f_model, user_num, item_num, dim)
g = get_model(args.g_model, user_num, item_num, dim)
beta = BetaModel(user_num=user_num, item_num=item_num)
f_recommender = ClassRecommender(user_num, item_num, f)
g_recommender = ClassRecommender(user_num, item_num, g)
g_recommender.fit(tr_df,
num_epochs=args.g_round_head,
cuda=args.cuda_idx,
num_neg=args.num_neg,
past_hist=past_hist,
decay=args.decay,
lr=args.lr)
ac_train_v3(f, False, g, False, beta, tr_df,
user_num=user_num,
item_num=item_num,
num_neg=args.num_neg,
past_hist=past_hist,
val_df=te_df,
rating_model=rating_model,
expo_model=expo_model,
num_epochs=args.epoch,
decay=args.decay,
cuda_idx=args.cuda_idx,
lr=args.lr,
g_weight=0.5,
expo_compound=args.p,
epsilon=args.epsilon)
logger.info(f'eval on test with f_model ({args.f_model})')
unbiased_eval(user_num, item_num, te_df, f_recommender, epsilon=args.epsilon,
rel_model=rating_model, past_hist=past_hist, expo_model=expo_model, expo_compound=args.p)
logger.info(f'eval on test with g_model ({args.g_model})')
unbiased_eval(user_num, item_num, te_df, g_recommender, epsilon=args.epsilon,
rel_model=rating_model, past_hist=past_hist, expo_model=expo_model, expo_compound=args.p)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', type=int, default=1024)
parser.add_argument('--dim', type=int, default=16)
parser.add_argument('--epsilon', type=float, default=4)
parser.add_argument('--p', type=float, default=1)
parser.add_argument('--epoch', type=float, default=10)
parser.add_argument('--decay', type=float, default=1e-7)
parser.add_argument('--sim_path', type=str, required=True)
parser.add_argument('--data_path', type=str, required=True)
parser.add_argument('--cuda_idx', type=int, default=0)
parser.add_argument('--data_name', type=str, default='ratings.feather')
parser.add_argument('--prefix', type=str, default='ml_1m_mf')
parser.add_argument('--tune_mode', action='store_true')
parser.add_argument('--num_neg', type=str, default=4)
parser.add_argument('--lr', type=float, default=0.01)
parser.add_argument('--models',
default=['ncf', 'mlp', 'gmf', 'acgan'],
nargs='+',
help = "input a list of ['ncf', 'mlp', 'gmf', 'acgan']")
parser.add_argument('--f_model', type=str, default='mlp')
parser.add_argument('--g_model', type=str, default='mlp')
parser.add_argument('--g_round_head', type=int, default=5)
args = parser.parse_args()
### set up logger
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger()
logger.setLevel(logging.INFO)
fh = logging.FileHandler(f'log/{args.prefix}-{str(time.time())}.log')
fh.setLevel(logging.DEBUG)
ch = logging.StreamHandler()
ch.setLevel(logging.WARN)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
fh.setFormatter(formatter)
ch.setFormatter(formatter)
logger.addHandler(fh)
logger.addHandler(ch)
logger.info(args)
main(args)