forked from Jittor/JSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
segnext_base_896x896_isaid_160k.py
112 lines (103 loc) · 3.58 KB
/
segnext_base_896x896_isaid_160k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# model settings
model = dict(
type='EncoderDecoder',
pretrained='jittorhub://mscan_b.pkl',
backbone=dict(type='MSCAN',
embed_dims=[64, 128, 320, 512],
mlp_ratios=[8, 8, 4, 4],
drop_rate=0.0,
drop_path_rate=0.2,
depths=[3, 3, 12, 3]),
decode_head=dict(type='LightHamHead',
in_channels=[128, 320, 512],
in_index=[1, 2, 3],
channels=512,
dropout_ratio=0.1,
num_classes=16,
align_corners=False,
loss_decode=dict(type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
ham_channels=512),
# model training and testing settings
train_cfg=dict(),
test_cfg=dict(mode='whole'))
dataset_type = 'iSAIDDataset'
data_root = 'datasets/iSAID_Patches'
img_norm_cfg = dict(mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True)
crop_size = (896, 896)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(type='Resize', img_scale=(896, 896), ratio_range=(0.5, 2.0)),
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(896, 896),
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='ResizeToMultiple', size_divisor=32),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
dataset = dict(
train=dict(type=dataset_type,
batch_size=16,
num_workers=8,
shuffle=True,
drop_last=False,
data_root=data_root,
img_dir='train/images',
ann_dir='train/Semantic_masks',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
# Fixed to one
batch_size=1,
num_workers=1,
shuffle=False,
drop_last=False,
data_root=data_root,
img_dir='val/images',
ann_dir='val/Semantic_masks',
pipeline=test_pipeline))
parameter_groups_generator = dict(type="CustomPrameterGroupsGenerator",
custom_keys={
'pos_block': dict(decay_mult=0.),
'norm': dict(decay_mult=0.),
'head': dict(lr_mult=10.)
})
optimizer = dict(
type='CustomAdamW',
lr=0.00006,
betas=(0.9, 0.999),
weight_decay=0.01,
)
max_iter = 160000
eval_interval = 8000
checkpoint_interval = 8000
log_interval = 50
scheduler = dict(type='PolyLR',
warmup='linear',
warmup_iters=1500,
warmup_ratio=1e-6,
max_steps=max_iter,
power=1.0,
min_lr=0)
logger = dict(type="RunLogger")