-
Notifications
You must be signed in to change notification settings - Fork 1
/
call_openai_API.py
106 lines (83 loc) · 3.33 KB
/
call_openai_API.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import openai
import os
openai.api_key = api_key = os.getenv("OPENAI_API_KEY")
def ai_function_generation(demo, context, question, requirements, model = "gpt-3.5-turbo"):
# parse args to comma separated string
messages = [{"role": "system",
"content": demo},
{"role": "user",
"content": f"Propositions: ```{context}```\nQuestion: ```{question}```, ```{requirements}```"}]
response = openai.ChatCompletion.create(
model = model,
messages = messages,
temperature = 0
)
return response.choices[0].message["content"]
def ai_generation_adjustment(demo, code, error_message, model = "gpt-3.5-turbo"):
# parse args to comma separated string
messages = [{"role": "user",
"content": f"{demo}\n Here is the original code: ```{code}```\n And the exception that was thrown is: ```{error_message}```"}]
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=0
)
return response.choices[0].message["content"]
def ai_generation_check(demo, question, model = "gpt-3.5-turbo"):
# parse args to comma separated string
messages = [{"role": "user",
"content": f"{demo}\n The sentence you are expected to decide is: ```{question}```"}]
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=0
)
return response.choices[0].message["content"]
def ai_function_backconvertion(demo, code, model = "gpt-3.5-turbo"):
# parse args to comma separated string
messages = [{"role": "system",
"content": demo},
{"role": "user",
"content": f"Code: ```{code}```"}]
response = openai.ChatCompletion.create(
model = model,
messages = messages,
temperature = 0
)
return response.choices[0].message["content"]
def ai_function_comparison(demo, original, generated, model = "gpt-3.5-turbo"):
# parse args to comma separated string
messages = [{"role": "system",
"content": demo},
{"role": "user",
"content": f"Original Propositions: ```{original}```, Generated Propositions: ```{generated}```"}]
response = openai.ChatCompletion.create(
model = model,
messages = messages,
temperature = 0
)
return response.choices[0].message["content"]
def ai_function_regeneration(demo, code, text, model = "gpt-3.5-turbo"):
# parse args to comma separated string
messages = [{"role": "system",
"content": demo},
{"role": "user",
"content": f"Original Code: ```{code}```, Problem information: ```{text}```"}]
response = openai.ChatCompletion.create(
model = model,
messages = messages,
temperature = 0
)
return response.choices[0].message["content"]
def ai_function_extraction(demo, text, model = "gpt-3.5-turbo"):
# parse args to comma separated string
messages = [{"role": "system",
"content": demo},
{"role": "user",
"content": f"Problem information: ```{text}```"}]
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=0
)
return response.choices[0].message["content"]