-
Notifications
You must be signed in to change notification settings - Fork 8
/
superbeastsai_nodes.py
601 lines (466 loc) · 23.9 KB
/
superbeastsai_nodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
import numpy as np
from PIL import Image, ImageOps, ImageDraw, ImageFilter, ImageEnhance, ImageCms
from PIL.PngImagePlugin import PngInfo
import torch
import torch.nn.functional as F
import json
import random
sRGB_profile = ImageCms.createProfile("sRGB")
Lab_profile = ImageCms.createProfile("LAB")
# Tensor to PIL
def tensor2pil(image):
return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))
# PIL to Tensor
def pil2tensor(image):
return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)
def adjust_shadows(luminance_array, shadow_intensity, hdr_intensity):
# Darken shadows more as shadow_intensity increases, scaled by hdr_intensity
return np.clip(luminance_array - luminance_array * shadow_intensity * hdr_intensity * 0.5, 0, 255)
def adjust_highlights(luminance_array, highlight_intensity, hdr_intensity):
# Brighten highlights more as highlight_intensity increases, scaled by hdr_intensity
return np.clip(luminance_array + (255 - luminance_array) * highlight_intensity * hdr_intensity * 0.5, 0, 255)
def apply_adjustment(base, factor, intensity_scale):
"""Apply positive adjustment scaled by intensity."""
# Ensure the adjustment increases values within [0, 1] range, scaling by intensity
adjustment = base + (base * factor * intensity_scale)
# Ensure adjustment stays within bounds
return np.clip(adjustment, 0, 1)
def multiply_blend(base, blend):
"""Multiply blend mode."""
return np.clip(base * blend, 0, 255)
def overlay_blend(base, blend):
"""Overlay blend mode."""
# Normalize base and blend to [0, 1] for blending calculation
base = base / 255.0
blend = blend / 255.0
return np.where(base < 0.5, 2 * base * blend, 1 - 2 * (1 - base) * (1 - blend)) * 255
def adjust_shadows_non_linear(luminance, shadow_intensity, max_shadow_adjustment=1.5):
lum_array = np.array(luminance, dtype=np.float32) / 255.0 # Normalize
# Apply a non-linear darkening effect based on shadow_intensity
shadows = lum_array ** (1 / (1 + shadow_intensity * max_shadow_adjustment))
return np.clip(shadows * 255, 0, 255).astype(np.uint8) # Re-scale to [0, 255]
def adjust_highlights_non_linear(luminance, highlight_intensity, max_highlight_adjustment=1.5):
lum_array = np.array(luminance, dtype=np.float32) / 255.0 # Normalize
# Brighten highlights more aggressively based on highlight_intensity
highlights = 1 - (1 - lum_array) ** (1 + highlight_intensity * max_highlight_adjustment)
return np.clip(highlights * 255, 0, 255).astype(np.uint8) # Re-scale to [0, 255]
def merge_adjustments_with_blend_modes(luminance, shadows, highlights, hdr_intensity, shadow_intensity, highlight_intensity):
# Ensure the data is in the correct format for processing
base = np.array(luminance, dtype=np.float32)
# Scale the adjustments based on hdr_intensity
scaled_shadow_intensity = shadow_intensity ** 2 * hdr_intensity
scaled_highlight_intensity = highlight_intensity ** 2 * hdr_intensity
# Create luminance-based masks for shadows and highlights
shadow_mask = np.clip((1 - (base / 255)) ** 2, 0, 1)
highlight_mask = np.clip((base / 255) ** 2, 0, 1)
# Apply the adjustments using the masks
adjusted_shadows = np.clip(base * (1 - shadow_mask * scaled_shadow_intensity), 0, 255)
adjusted_highlights = np.clip(base + (255 - base) * highlight_mask * scaled_highlight_intensity, 0, 255)
# Combine the adjusted shadows and highlights
adjusted_luminance = np.clip(adjusted_shadows + adjusted_highlights - base, 0, 255)
# Blend the adjusted luminance with the original luminance based on hdr_intensity
final_luminance = np.clip(base * (1 - hdr_intensity) + adjusted_luminance * hdr_intensity, 0, 255).astype(np.uint8)
return Image.fromarray(final_luminance)
def apply_gamma_correction(lum_array, gamma):
"""
Apply gamma correction to the luminance array.
:param lum_array: Luminance channel as a NumPy array.
:param gamma: Gamma value for correction.
"""
if gamma == 0:
return np.clip(lum_array, 0, 255).astype(np.uint8)
epsilon = 1e-7 # Small value to avoid dividing by zero
gamma_corrected = 1 / (1.1 - gamma)
adjusted = 255 * ((lum_array / 255) ** gamma_corrected)
return np.clip(adjusted, 0, 255).astype(np.uint8)
# create a wrapper function that can apply a function to multiple images in a batch while passing all other arguments to the function
def apply_to_batch(func):
def wrapper(self, image, *args, **kwargs):
images = []
for img in image:
images.append(func(self, img, *args, **kwargs))
batch_tensor = torch.cat(images, dim=0)
return (batch_tensor, )
return wrapper
class HDREffects:
@classmethod
def INPUT_TYPES(cls):
return {'required': {'image': ('IMAGE', {'default': None}),
'hdr_intensity': ('FLOAT', {'default': 0.5, 'min': 0.0, 'max': 5.0, 'step': 0.01}),
'shadow_intensity': ('FLOAT', {'default': 0.25, 'min': 0.0, 'max': 1.0, 'step': 0.01}),
'highlight_intensity': ('FLOAT', {'default': 0.75, 'min': 0.0, 'max': 1.0, 'step': 0.01}),
'gamma_intensity': ('FLOAT', {'default': 0.0, 'min': 0.0, 'max': 1.0, 'step': 0.01}),
'contrast': ('FLOAT', {'default': 0.1, 'min': 0.0, 'max': 1.0, 'step': 0.01}),
'enhance_color': ('FLOAT', {'default': 0.25, 'min': 0.0, 'max': 1.0, 'step': 0.01})
}}
RETURN_TYPES = ('IMAGE',)
RETURN_NAMES = ('result_img',)
FUNCTION = 'apply_hdr2'
CATEGORY = 'SuperBeastsAI/Image'
@apply_to_batch
def apply_hdr2(self, image, hdr_intensity=0.5, shadow_intensity=0.25, highlight_intensity=0.75, gamma_intensity=0.25, contrast=0.1, enhance_color=0.25):
# Load the image
img = tensor2pil(image)
# Step 1: Convert RGB to LAB for better color preservation
img_lab = ImageCms.profileToProfile(img, sRGB_profile, Lab_profile, outputMode='LAB')
# Extract L, A, and B channels
luminance, a, b = img_lab.split()
# Convert luminance to a NumPy array for processing
lum_array = np.array(luminance, dtype=np.float32)
# Preparing adjustment layers (shadows, midtones, highlights)
# This example assumes you have methods to extract or calculate these adjustments
shadows_adjusted = adjust_shadows_non_linear(luminance, shadow_intensity)
highlights_adjusted = adjust_highlights_non_linear(luminance, highlight_intensity)
merged_adjustments = merge_adjustments_with_blend_modes(lum_array, shadows_adjusted, highlights_adjusted, hdr_intensity, shadow_intensity, highlight_intensity)
# Apply gamma correction with a base_gamma value (define based on desired effect)
gamma_corrected = apply_gamma_correction(np.array(merged_adjustments), gamma_intensity)
gamma_corrected = Image.fromarray(gamma_corrected).resize(a.size)
# Merge L channel back with original A and B channels
adjusted_lab = Image.merge('LAB', (gamma_corrected, a, b))
# Step 3: Convert LAB back to RGB
img_adjusted = ImageCms.profileToProfile(adjusted_lab, Lab_profile, sRGB_profile, outputMode='RGB')
# Enhance contrast
enhancer = ImageEnhance.Contrast(img_adjusted)
contrast_adjusted = enhancer.enhance(1 + contrast)
# Enhance color saturation
enhancer = ImageEnhance.Color(contrast_adjusted)
color_adjusted = enhancer.enhance(1 + enhance_color * 0.2)
return pil2tensor(color_adjusted)
class MakeResizedMaskBatch:
"""
Creates a batch of masks from multiple individual masks or batches.
"""
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"width": ("INT", {"default": 512, "min": 1, "step": 1}),
"height": ("INT", {"default": 768, "min": 1, "step": 1}),
},
"optional": {
"mask1": ("MASK",),
"mask2": ("MASK",),
"mask3": ("MASK",),
"mask4": ("MASK",),
"mask5": ("MASK",),
"mask6": ("MASK",),
"mask7": ("MASK",),
"mask8": ("MASK",),
"mask9": ("MASK",),
"mask10": ("MASK",),
"mask11": ("MASK",),
"mask12": ("MASK",),
},
}
RETURN_TYPES = ("MASK",)
FUNCTION = "append"
CATEGORY = "SuperBeastsAI/Masks"
def append(self, width, height, mask1=None, mask2=None, mask3=None, mask4=None, mask5=None, mask6=None,
mask7=None, mask8=None, mask9=None, mask10=None, mask11=None, mask12=None):
masks = [mask1, mask2, mask3, mask4, mask5, mask6, mask7, mask8, mask9, mask10, mask11, mask12]
valid_masks = [mask for mask in masks if mask is not None]
if not valid_masks:
raise ValueError("At least one input mask must be provided.")
cropped_masks = []
for mask in valid_masks:
if mask.ndim == 2:
mask = mask.unsqueeze(0).unsqueeze(0) # Add batch and channel dimensions
elif mask.ndim == 3:
mask = mask.unsqueeze(0) # Add batch dimension
elif mask.ndim != 4 or (mask.ndim == 4 and mask.shape[1] != 1):
raise ValueError(f"Invalid mask shape: {mask.shape}. Expected (N, 1, H, W) or (1, H, W) or (H, W).")
# Scale the mask to match the desired width while maintaining the aspect ratio
scale_factor = width / mask.shape[-1]
scaled_height = int(mask.shape[-2] * scale_factor)
scaled_mask = F.interpolate(mask, size=(scaled_height, width), mode='bilinear', align_corners=False)
# Perform center cropping
if scaled_height < height:
# Pad the top and bottom of the mask
pad_top = (height - scaled_height) // 2
pad_bottom = height - scaled_height - pad_top
cropped_mask = F.pad(scaled_mask, (0, 0, pad_top, pad_bottom), mode='constant', value=0)
else:
# Crop the center of the mask
crop_top = (scaled_height - height) // 2
crop_bottom = crop_top + height
cropped_mask = scaled_mask[:, :, crop_top:crop_bottom, :]
cropped_masks.append(cropped_mask)
# Concatenate the cropped masks along the batch dimension
result = torch.cat(cropped_masks, dim=0)
return (result,)
def adjust_brightness(image, brightness_factor):
enhancer = ImageEnhance.Brightness(image)
adjusted_image = enhancer.enhance(brightness_factor)
return adjusted_image
def calculate_brightness_factor(target_brightness, current_brightness):
return target_brightness / current_brightness
def get_average_brightness(image):
grayscale_image = image.convert("L")
histogram = grayscale_image.histogram()
pixels = sum(histogram)
brightness = scale = len(histogram)
total_brightness = sum(i * w for i, w in enumerate(histogram))
return total_brightness / pixels
def apply_dithering(image):
return image.convert("P", palette=Image.ADAPTIVE, colors=256).convert("RGB")
def apply_noise_reduction(image, strength):
return image.filter(ImageFilter.GaussianBlur(radius=strength))
def apply_gradient_smoothing(image, strength):
return image.filter(ImageFilter.SMOOTH_MORE if strength > 1 else ImageFilter.SMOOTH)
def blend_images(image1, image2, alpha):
return Image.blend(image1, image2, alpha)
class Deflicker:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"images": ("IMAGE",),
"context_length": ("INT", {"default": 5, "min": 1, "max": 20, "step": 1}),
"brightness_threshold": ("FLOAT", {"default": 0.05, "min": 0.01, "max": 0.5, "step": 0.01}),
"blending_strength": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 1.0, "step": 0.01}),
"noise_reduction_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 5.0, "step": 0.1}),
"gradient_smoothing_strength": ("INT", {"default": 1, "min": 0, "max": 3, "step": 1}),
"batch_size": ("INT", {"default": 10, "min": 1, "max": 100, "step": 1})
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "deflicker"
CATEGORY = "SuperBeastsAI/Animation"
def deflicker(self, images, context_length=5, brightness_threshold=0.05, blending_strength=0.5,
noise_reduction_strength=1.0, gradient_smoothing_strength=1, batch_size=10):
num_frames = len(images)
adjusted_tensor = []
for i in range(0, num_frames, batch_size):
batch_images = images[i:i+batch_size]
# Convert batch tensor to a list of PIL images
pil_images = [tensor2pil(image) for image in batch_images]
adjusted_images = []
for j in range(len(pil_images)):
current_image = pil_images[j]
context_start = max(0, i + j - context_length // 2)
context_end = min(num_frames, i + j + context_length // 2 + 1)
context_images = images[context_start:context_end]
current_brightness = get_average_brightness(current_image)
context_brightnesses = [get_average_brightness(tensor2pil(img)) for img in context_images]
average_brightness = np.mean(context_brightnesses)
if abs(current_brightness - average_brightness) > brightness_threshold:
brightness_factor = calculate_brightness_factor(average_brightness, current_brightness)
adjusted_image = adjust_brightness(current_image, brightness_factor)
else:
adjusted_image = current_image
# Apply noise reduction to the adjusted image
denoised_image = apply_noise_reduction(adjusted_image, noise_reduction_strength)
# Apply gradient smoothing to the denoised image
smoothed_image = apply_gradient_smoothing(denoised_image, gradient_smoothing_strength)
# Apply dithering to the smoothed image
dithered_image = apply_dithering(smoothed_image)
# Blend the dithered image with the original image using adaptive blending
blending_alpha = min(1.0, blending_strength * (1.0 + abs(current_brightness - average_brightness)))
blended_image = blend_images(current_image, dithered_image, blending_alpha)
adjusted_images.append(blended_image)
# Convert the adjusted PIL images back to a tensor
adjusted_batch_tensor = torch.cat([pil2tensor(img) for img in adjusted_images], dim=0)
adjusted_tensor.append(adjusted_batch_tensor)
# Concatenate the adjusted batches along the first dimension
adjusted_tensor = torch.cat(adjusted_tensor, dim=0)
return (adjusted_tensor,)
def temporal_smoothing(frames, window_size):
num_frames = len(frames)
smoothed_frames = []
for i in range(num_frames):
start = max(0, i - window_size // 2)
end = min(num_frames, i + window_size // 2 + 1)
window_frames = frames[start:end]
smoothed_frame = np.mean(window_frames, axis=0)
smoothed_frames.append(smoothed_frame)
return smoothed_frames
class PixelDeflicker:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"images": ("IMAGE",),
"window_size": ("INT", {"default": 2, "min": 1, "max": 20, "step": 1}),
"blending_strength": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 1.0, "step": 0.01}),
"batch_size": ("INT", {"default": 10, "min": 1, "max": 100, "step": 1})
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "pixelDeflicker"
CATEGORY = "SuperBeastsAI/Animation"
def pixelDeflicker(self, images, window_size=5, blending_strength=0.5, batch_size=10):
num_frames = len(images)
blended_tensor = []
for i in range(0, num_frames, batch_size):
batch_images = images[i:i+batch_size]
# Convert batch tensor to a list of PIL images
pil_images = [tensor2pil(image) for image in batch_images]
# Convert PIL images to numpy arrays
numpy_frames = [np.array(img) / 255.0 for img in pil_images]
# Apply temporal smoothing to the numpy frames
smoothed_frames = temporal_smoothing(numpy_frames, window_size)
# Blend the smoothed frames with the original frames
blended_frames = [
np.clip(original * (1 - blending_strength) + smoothed * blending_strength, 0, 1)
for original, smoothed in zip(numpy_frames, smoothed_frames)
]
# Convert the blended frames back to PIL images
blended_pil_images = [Image.fromarray((frame * 255).astype(np.uint8)) for frame in blended_frames]
# Convert the blended PIL images back to a tensor
blended_batch_tensor = torch.cat([pil2tensor(img) for img in blended_pil_images], dim=0)
blended_tensor.append(blended_batch_tensor)
# Concatenate the blended batches along the first dimension
blended_tensor = torch.cat(blended_tensor, dim=0)
return (blended_tensor,)
def resize_and_crop(pil_img, target_width, target_height):
"""Resize and crop an image to fit exactly the specified dimensions."""
original_width, original_height = pil_img.size
aspect_ratio = original_width / original_height
target_aspect_ratio = target_width / target_height
if target_aspect_ratio > aspect_ratio:
# Target is wider than the image
scale_factor = target_width / original_width
scaled_height = int(original_height * scale_factor)
scaled_width = target_width
else:
# Target is taller than the image
scale_factor = target_height / original_height
scaled_height = target_height
scaled_width = int(original_width * scale_factor)
# Resize the image
resized_img = pil_img.resize((scaled_width, scaled_height), Image.BILINEAR)
# Crop the image
if scaled_width != target_width or scaled_height != target_height:
left = (scaled_width - target_width) // 2
top = (scaled_height - target_height) // 2
right = left + target_width
bottom = top + target_height
cropped_img = resized_img.crop((left, top, right, bottom))
else:
cropped_img = resized_img
return cropped_img
class ImageBatchManagement:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"width": ("INT", {"default": 512, "order": 1}),
"height": ("INT", {"default": 768}),
"max_images": ("INT", {"default": 10}), # New INT input for maximum number of images
"random_order": ("BOOLEAN", {"default": False})
},
"optional": {
"new_manual_order": ("STRING", {"default": ""}),
},
}
RETURN_TYPES = ("IMAGE", "STRING")
FUNCTION = "reorder"
CATEGORY = "SuperBeastsAI/Image"
def reorder(self, width, height, random_order, max_images, **kwargs):
images = [kwargs["image1"]] # Start with the required image1 input
i = 2
while f"image{i}" in kwargs:
images.append(kwargs[f"image{i}"])
i += 1
if max_images is not None:
images = images[:max_images]
# Default order_output if new_manual_order isn't provided or is empty
order_output = ",".join(str(idx + 1) for idx in range(len(images)))
# Retrieve and apply new_manual_order if it exists
if 'new_manual_order' in kwargs and kwargs['new_manual_order']:
order_indices = [int(idx) - 1 for idx in kwargs['new_manual_order'].split(',') if idx.strip()]
images = [images[idx] for idx in order_indices if idx < len(images)]
order_output = kwargs['new_manual_order']
processed_images = []
for img in images:
pil_img = tensor2pil(img)
resized_cropped_img = resize_and_crop(pil_img, width, height)
img_tensor = pil2tensor(resized_cropped_img)
processed_images.append(img_tensor)
result = torch.cat(processed_images, dim=0) if processed_images else torch.empty(0, 3, height, width)
return (result, order_output)
class MaskBatchManagement:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"width": ("INT", {"default": 512}),
"height": ("INT", {"default": 768})
},
"optional": {
"new_order": ("STRING", {"default": ""}),
},
}
RETURN_TYPES = ("MASK",)
FUNCTION = "append"
CATEGORY = "SuperBeastsAI/Masks"
def append(self, width, height, new_order, **kwargs):
masks = [kwargs["mask1"]] # Start with the required mask1 input
i = 2
while f"mask{i}" in kwargs:
masks.append(kwargs[f"mask{i}"])
i += 1
if new_order:
order_indices = [int(idx) - 1 for idx in new_order.split(',') if idx.strip()]
masks = [masks[idx] for idx in order_indices if idx < len(masks)]
processed_masks = []
for mask in masks:
pil_mask = tensor2pil(mask)
resized_cropped_mask = resize_and_crop(pil_mask, width, height)
mask_tensor = pil2tensor(resized_cropped_mask)
processed_masks.append(mask_tensor)
result = torch.cat(processed_masks, dim=0) if processed_masks else torch.empty(0, 1, height, width)
return (result,)
class StringListManager:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"frames_per_image": ("INT", {"default": 1, "min": 1, "step": 1})
},
"optional": {
"new_order": ("STRING", {"default": ""}),
},
}
RETURN_TYPES = ("STRING",)
FUNCTION = "reorder_strings"
CATEGORY = "SuperBeastsAI/Utils"
def reorder_strings(self, frames_per_image, new_order, **kwargs):
strings = [kwargs["string1"]] # Start with the required string1 input
i = 2
while f"string{i}" in kwargs:
strings.append(kwargs[f"string{i}"])
i += 1
if new_order:
order_indices = [int(idx) - 1 for idx in new_order.split(',') if idx.strip()]
strings = [strings[idx] for idx in order_indices if idx < len(strings)]
result = []
for i, string in enumerate(strings):
result.append('"{frames}": "{string}"'.format(frames=frames_per_image * i, string=string))
return (",\n".join(result),)
NODE_CLASS_MAPPINGS = {
'HDR Effects (SuperBeasts.AI)': HDREffects,
'Make Resized Mask Batch (SuperBeasts.AI)': MakeResizedMaskBatch,
'Mask Batch Manager (SuperBeasts.AI)': MaskBatchManagement,
'Image Batch Manager (SuperBeasts.AI)': ImageBatchManagement,
'String List Manager (SuperBeasts.AI)': StringListManager,
'Deflicker - Experimental (SuperBeasts.AI)': Deflicker,
'Pixel Deflicker - Experimental (SuperBeasts.AI)': PixelDeflicker
}
NODE_DISPLAY_NAME_MAPPINGS = {
'HDREffects': 'HDR Effects (SuperBeasts.AI)',
'MakeResizedMaskBatch': 'Make Resized Mask Batch (SuperBeasts.AI)',
'MaskBatchManagement':'Mask Batch Manager (SuperBeasts.AI)',
'ImageBatchManagement':'Image Batch Manager (SuperBeasts.AI)',
'StringListManager': 'String List Manager (SuperBeasts.AI)',
'Deflicker': 'Deflicker - Experimental (SuperBeasts.AI)',
'PixelDeflicker': 'Pixel Deflicker - Experimental (SuperBeasts.AI)',
}