-
-
Notifications
You must be signed in to change notification settings - Fork 881
/
perlin.py
52 lines (40 loc) · 1.48 KB
/
perlin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import numpy as np
def perlin(x, y, seed=0):
# permutation table
np.random.seed(seed)
p = np.arange(256, dtype=int)
np.random.shuffle(p)
p = np.stack([p, p]).flatten()
# coordinates of the top-left
xi, yi = x.astype(int), y.astype(int)
# internal coordinates
xf, yf = x - xi, y - yi
# fade factors
u, v = fade(xf), fade(yf)
# noise components
n00 = gradient(p[p[xi] + yi], xf, yf)
n01 = gradient(p[p[xi] + yi + 1], xf, yf - 1)
n11 = gradient(p[p[xi + 1] + yi + 1], xf - 1, yf - 1)
n10 = gradient(p[p[xi + 1] + yi], xf - 1, yf)
# combine noises
x1 = lerp(n00, n10, u)
x2 = lerp(n01, n11, u) # FIX1: I was using n10 instead of n01
return lerp(x1, x2, v) # FIX2: I also had to reverse x1 and x2 here
def lerp(a, b, x):
"linear interpolation"
return a + x * (b - a)
def fade(t):
"6t^5 - 15t^4 + 10t^3"
return 6 * t**5 - 15 * t**4 + 10 * t**3
def gradient(h, x, y):
"grad converts h to the right gradient vector and return the dot product with (x,y)"
vectors = np.array([[0, 1], [0, -1], [1, 0], [-1, 0]])
g = vectors[h % 4]
return g[:, :, 0] * x + g[:, :, 1] * y
lin = np.linspace(0, 5, 100, endpoint=False)
x, y = np.meshgrid(lin, lin)
def perlinNoise(height, width, octavesx=5, octavesy=5, seed=None):
linx = np.linspace(0, octavesx, width, endpoint=False)
liny = np.linspace(0, octavesy, height, endpoint=False)
x, y = np.meshgrid(linx, liny)
return perlin(x, y, seed=seed)