You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
File /opt/conda/lib/python3.10/site-packages/sat/model/base_model.py:207, in BaseModel.from_pretrained(cls, name, args, home_path, url, prefix, build_only, overwrite_args, **kwargs)
205 model = get_model(args, cls, **kwargs)
206 if not build_only:
--> 207 load_checkpoint(model, args, load_path=model_path, prefix=prefix)
208 return model, args
File /opt/conda/lib/python3.10/site-packages/sat/training/model_io.py:238, in load_checkpoint(model, args, load_path, prefix)
235 module = model
237 # only load module, other hyperparameters are just for recording.
--> 238 missing_keys, unexpected_keys = module.load_state_dict(sd['module'], strict=False)
239 if len(unexpected_keys) > 0:
240 print_rank0(
241 f'Will continue but found unexpected_keys! Check whether you are loading correct checkpoints: {unexpected_keys}.')
File /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:2138, in Module.load_state_dict(self, state_dict, strict, assign)
2131 out = hook(module, incompatible_keys)
2132 assert out is None, (
2133 "Hooks registered with register_load_state_dict_post_hook are not"
2134 "expected to return new values, if incompatible_keys need to be modified,"
2135 "it should be done inplace."
2136 )
-> 2138 load(self, state_dict)
2139 del load
2141 if strict:
File /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:2126, in Module.load_state_dict..load(module, local_state_dict, prefix)
2124 child_prefix = prefix + name + '.'
2125 child_state_dict = {k: v for k, v in local_state_dict.items() if k.startswith(child_prefix)}
-> 2126 load(child, child_state_dict, child_prefix)
2128 # Note that the hook can modify missing_keys and unexpected_keys.
2129 incompatible_keys = _IncompatibleKeys(missing_keys, unexpected_keys)
File /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:2126, in Module.load_state_dict..load(module, local_state_dict, prefix)
2124 child_prefix = prefix + name + '.'
2125 child_state_dict = {k: v for k, v in local_state_dict.items() if k.startswith(child_prefix)}
-> 2126 load(child, child_state_dict, child_prefix)
2128 # Note that the hook can modify missing_keys and unexpected_keys.
2129 incompatible_keys = _IncompatibleKeys(missing_keys, unexpected_keys)
[... skipping similar frames: Module.load_state_dict.<locals>.load at line 2126 (3 times)]
File /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:2126, in Module.load_state_dict..load(module, local_state_dict, prefix)
2124 child_prefix = prefix + name + '.'
2125 child_state_dict = {k: v for k, v in local_state_dict.items() if k.startswith(child_prefix)}
-> 2126 load(child, child_state_dict, child_prefix)
2128 # Note that the hook can modify missing_keys and unexpected_keys.
2129 incompatible_keys = _IncompatibleKeys(missing_keys, unexpected_keys)
File /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:2120, in Module.load_state_dict..load(module, local_state_dict, prefix)
2118 if assign:
2119 local_metadata['assign_to_params_buffers'] = assign
-> 2120 module._load_from_state_dict(
2121 local_state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
2122 for name, child in module._modules.items():
2123 if child is not None:
File /opt/conda/lib/python3.10/site-packages/sat/model/finetune/lora2.py:47, in HackLinearNF4._load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
45 def load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
46 if prefix + 'weight' in state_dict:
---> 47 self.weight.data.copy(state_dict[prefix+'weight'])
48 if self.weight.data.dtype == torch.uint8:
49 copy_nested_list(state_dict[prefix+'quant_state'], self.weight.quant_state)
RuntimeError: output with shape [25165824, 1] doesn't match the broadcast shape [25165824, 0]
How can I solve this problem?
The text was updated successfully, but these errors were encountered:
RuntimeError Traceback (most recent call last)
Cell In[9], line 4
1 from finetune_visualglm import FineTuneVisualGLMModel
2 import argparse
----> 4 model, args = FineTuneVisualGLMModel.from_pretrained('/kaggle/working/checkpoints/finetune-visualglm-6b-04-09-09-10',
5 args=argparse.Namespace(
6 fp16=True,
7 skip_init=True,
8 use_gpu_initialization=True,
9 device='cuda',
10 ))
11 model.get_mixin('lora').merge_lora()
12 args.layer_range = []
File /opt/conda/lib/python3.10/site-packages/sat/model/base_model.py:207, in BaseModel.from_pretrained(cls, name, args, home_path, url, prefix, build_only, overwrite_args, **kwargs)
205 model = get_model(args, cls, **kwargs)
206 if not build_only:
--> 207 load_checkpoint(model, args, load_path=model_path, prefix=prefix)
208 return model, args
File /opt/conda/lib/python3.10/site-packages/sat/training/model_io.py:238, in load_checkpoint(model, args, load_path, prefix)
235 module = model
237 # only load module, other hyperparameters are just for recording.
--> 238 missing_keys, unexpected_keys = module.load_state_dict(sd['module'], strict=False)
239 if len(unexpected_keys) > 0:
240 print_rank0(
241 f'Will continue but found unexpected_keys! Check whether you are loading correct checkpoints: {unexpected_keys}.')
File /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:2138, in Module.load_state_dict(self, state_dict, strict, assign)
2131 out = hook(module, incompatible_keys)
2132 assert out is None, (
2133 "Hooks registered with
register_load_state_dict_post_hook
are not"2134 "expected to return new values, if incompatible_keys need to be modified,"
2135 "it should be done inplace."
2136 )
-> 2138 load(self, state_dict)
2139 del load
2141 if strict:
File /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:2126, in Module.load_state_dict..load(module, local_state_dict, prefix)
2124 child_prefix = prefix + name + '.'
2125 child_state_dict = {k: v for k, v in local_state_dict.items() if k.startswith(child_prefix)}
-> 2126 load(child, child_state_dict, child_prefix)
2128 # Note that the hook can modify missing_keys and unexpected_keys.
2129 incompatible_keys = _IncompatibleKeys(missing_keys, unexpected_keys)
File /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:2126, in Module.load_state_dict..load(module, local_state_dict, prefix)
2124 child_prefix = prefix + name + '.'
2125 child_state_dict = {k: v for k, v in local_state_dict.items() if k.startswith(child_prefix)}
-> 2126 load(child, child_state_dict, child_prefix)
2128 # Note that the hook can modify missing_keys and unexpected_keys.
2129 incompatible_keys = _IncompatibleKeys(missing_keys, unexpected_keys)
File /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:2126, in Module.load_state_dict..load(module, local_state_dict, prefix)
2124 child_prefix = prefix + name + '.'
2125 child_state_dict = {k: v for k, v in local_state_dict.items() if k.startswith(child_prefix)}
-> 2126 load(child, child_state_dict, child_prefix)
2128 # Note that the hook can modify missing_keys and unexpected_keys.
2129 incompatible_keys = _IncompatibleKeys(missing_keys, unexpected_keys)
File /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:2120, in Module.load_state_dict..load(module, local_state_dict, prefix)
2118 if assign:
2119 local_metadata['assign_to_params_buffers'] = assign
-> 2120 module._load_from_state_dict(
2121 local_state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
2122 for name, child in module._modules.items():
2123 if child is not None:
File /opt/conda/lib/python3.10/site-packages/sat/model/finetune/lora2.py:47, in HackLinearNF4._load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
45 def load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
46 if prefix + 'weight' in state_dict:
---> 47 self.weight.data.copy(state_dict[prefix+'weight'])
48 if self.weight.data.dtype == torch.uint8:
49 copy_nested_list(state_dict[prefix+'quant_state'], self.weight.quant_state)
RuntimeError: output with shape [25165824, 1] doesn't match the broadcast shape [25165824, 0]
How can I solve this problem?
The text was updated successfully, but these errors were encountered: