-
Notifications
You must be signed in to change notification settings - Fork 17
/
cnn_model.py
277 lines (197 loc) · 10.6 KB
/
cnn_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import tensorflow as tf
from tensorflow.contrib import rnn as rnn_cell
import numpy as np
import io
from util.tf_utils import tf_confusion_metrics
import inspect
import util.eval as eval
class Model:
"""
-- Copied from RNN TODO update to FC --
Tensorflow graph using ful
Tensorflow Graph using Fully connected layers and fully connected softmax layer for field identification
with multispectral/temporal data acquired from satellite imagery
Params
tf placeholders:
X Input data cube of dimensions [batch_size x max_observations x n_input]
y Target data Tensor of dimensions [batch_size x max_observations]
seq_lenghts Number of observations for each batch if observation < max_obs data is
padded with zeros [batch_size]
input parameters:
n_input length of observed pixel values. [n_pixels * n_bands + n_time]
n_pixels number of observed pixels (default 3*3)
n_bands number of observed bands (default 6)
n_time number of time parameters (default 1 e.g. day of year)
n_classes number of target classes
batch_size number of batches
max_obs maximum number of observations if seq_lengs < max_obs matrices will be padded
controls number of iterations in rnn layers (aka sequence length)
network specific parameters
n_layers number of rnn layers (aka depth)
learning_rate
dropout_keep_prob
logdir
Marc.Russwurm@tum.de
"""
def __init__(self, n_input=9 * 6 + 1, n_classes=20,
n_layers=2, dropout_keep_prob=.5, adam_lr=1e-3, adam_b1=0.9, adam_b2=0.999, adam_eps=1e-8,
fc_w_stddev=0.1, fc_b_offset=0.1, n_cell_per_input=1, activation_func=None, gpu=None):
# save input arguments
self.args = inspect.getargvalues(inspect.currentframe()).locals
del self.args["self"] # delete self
self.n_classes = n_classes
if activation_func is None:
activation_func = tf.nn.sigmoid
# alternative tf.nn.relu
# take
self.n_neurons = n_neurons = n_cell_per_input * n_input
with tf.device(None):
with tf.variable_scope('input'):
# block of [batch_size x max_obs x n_input]
self.X = X = tf.placeholder(tf.float32, [None, n_input], name="X")
self.y = y = tf.placeholder(tf.float32, [None, n_classes], name="y")
self.batch_size = batch_size = tf.placeholder(tf.int32, name="batch_size")
with tf.name_scope('FC'):
# first fc layer: expand neuron dimensions from n_input to n_neurons
# list of fully connected weights matrices
fc_in = X
# first fc layer X:(batchsize x n_input) -> fc_in (batchsize x n_neurons)
fc_W0 = tf.Variable(tf.truncated_normal([n_input, n_neurons], stddev=fc_w_stddev), name="W0")
fc_b0 = tf.Variable(tf.constant(fc_b_offset, shape=[n_neurons]), name="b0")
h = activation_func(tf.matmul(fc_in, fc_W0) + fc_b0)
h = tf.nn.dropout(h, dropout_keep_prob)
# for all other fc layers
fc_W = []
fc_b = []
for i in range(1, n_layers):
W = tf.Variable(tf.truncated_normal([n_neurons, n_neurons], stddev=fc_w_stddev), name="W" + str(i))
b = tf.Variable(tf.constant(fc_b_offset, shape=[n_neurons]), name="b" + str(i))
h = tf.matmul(h, W) + b
# apply activation function
h = activation_func(h)
h = tf.nn.dropout(h, dropout_keep_prob)
fc_out = h
with tf.name_scope('fc_softmax'):
# reshape outputs to: block of [batch_size * max_obs x rnn_size]
softmax_in = tf.reshape(fc_out, [-1, n_neurons])
softmax_w = tf.Variable(tf.truncated_normal([n_neurons, n_classes], stddev=fc_w_stddev), name="W_softmax")
softmax_b = tf.Variable(tf.constant(fc_b_offset, shape=[n_classes]), name="b_softmax")
self.logits = logits = tf.matmul(softmax_in, softmax_w) + softmax_b
with tf.name_scope('train'):
# Define loss and optimizer
# create mask for cross entropies incases where seq_lengths < max_max_obs
# masking from http://stackoverflow.com/questions/34128104/tensorflow-creating-mask-of-varied-lengths
""" no masking needed
with tf.name_scope('mask'):
lengths_transposed = tf.expand_dims(seq_lengths, 1)
range = tf.range(0, max_obs, 1)
range_row = tf.expand_dims(range, 0)
self.mask = mask = tf.less(range_row, lengths_transposed)
"""
self.cross_entropy_matrix = cross_entropy_matrix = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y)
# normalize with total number of observations
self.cross_entropy = cross_entropy = tf.reduce_sum(cross_entropy_matrix) / tf.cast(batch_size,"float32")
tf.summary.scalar('cross_entropy', cross_entropy)
# grad_train_op = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cross_entropy)
self.train_op = tf.train.AdamOptimizer(learning_rate=adam_lr, beta1=adam_b1, beta2=adam_b2,
epsilon=adam_eps).minimize(cross_entropy)
# tf.summary.scalar('learning_rate', learning_rate)
with tf.name_scope('evaluation'):
self.probabilities = probs = tf.nn.softmax(logits, name="full_probability_matrix")
# Evaluate model
predicted = tf.argmax(logits, 1)
targets = tf.argmax(y, 1)
correct_pred = tf.equal(predicted, targets)
self.accuracy_op = accuracy = tf.reduce_sum(tf.cast(correct_pred, tf.float32)) / tf.cast(batch_size, tf.float32)
tf.summary.scalar('accuracy', accuracy)
self.probs_list = probs_list = tf.reshape(probs, (-1, n_classes))
predicted_list = tf.reshape(predicted, [-1])
targets_list = tf.reshape(targets, [-1])
one_hot_targets = tf.one_hot(targets_list, n_classes)
scores = tf.boolean_mask(probs_list, tf.cast(one_hot_targets, tf.bool))
self.scores = probs_list
self.targets = tf.reshape(y, [-1,n_classes])
# drop all values which are > seqlength
#self.scores = tf.boolean_mask(scores, mask_list)
#self.targets = tf.boolean_mask(targets_list, mask_list)
#self.obs = tf.boolean_mask(obs_list, mask_list)
"""
self.confusion_matrix = confusion_matrix = tf.contrib.metrics.confusion_matrix(
tf.boolean_mask(targets_list, mask_list),
tf.boolean_mask(predicted_list, mask_list),
num_classes=n_classes)
confusion_matrix = tf.cast(confusion_matrix, tf.uint8)
confusion_matrix = tf.expand_dims(confusion_matrix, 2)
confusion_matrix = tf.expand_dims(confusion_matrix, 0)
tf.summary.image("confusion matrix", confusion_matrix, max_outputs=3)
logits_ = tf.cast(logits, tf.uint8)
logits_ = tf.expand_dims(logits_, 3)
tf.summary.image("logits", logits_, max_outputs=1)
probs_ = tf.cast(probs*255, tf.uint8)
probs_ = tf.expand_dims(probs_, 3)
tf.summary.image("probabilities", probs_, max_outputs=1)
targets_ = tf.cast(y_, tf.uint8)
targets_ = tf.expand_dims(targets_, 3)
tf.summary.image("targets", targets_, max_outputs=1)
# tf.add_to_collection(tf.GraphKeys.SUMMARIES, cm_im_summary)
"""
# Merge all the summaries and write them out to /tmp/mnist_logs (by default)
self.merge_summary_op = tf.summary.merge_all()
self.init_op = tf.global_variables_initializer()
def main():
# model = Model()
test()
def unroll(x, y, seq_lengths):
"""
Reshapes and masks input and output data from
X(batchsize x n_max_obs x n_input) -> X_ (new_batchsize x n_input)
y(batchsize x n_max_obs x n_classes) -> X_ (new_batchsize x n_classes)
new_batch_size is variable representing batchsize * n_max_obs - invalid_observations
with invalid observations being observations > seq_length -> means
if at one point only 24 of maximum 26 images are available X is usually padded with zeros
this masking removes the last two observations
:return:
"""
# create mask for valid times of acquisition
batch_size, max_seqlengths, n_input = x.shape
np.arange(0, max_seqlengths) * np.ones((batch_size, max_seqlengths))
ones = np.ones([batch_size, max_seqlengths])
mask = np.arange(0, max_seqlengths) * ones < (seq_lengths * ones.T).T
new_x = x[mask]
new_y = y[mask]
return new_x, new_y
def test():
import os
import pickle
n_input = 9 * 6 + 1
n_classes = 20
batch_size = 50
max_obs = 26
n_classes = 38
confusion_matrix = np.zeros((n_classes, n_classes), dtype=int)
model = Model(n_input=n_input, n_classes=n_classes, n_layers=2, batch_size=batch_size,
adam_lr=1e-3, dropout_keep_prob=0.5, n_cell_per_input=4)
savedir = "tmp"
if not os.path.exists(savedir):
os.makedirs(savedir)
# dump pickle args for loading
#pickle.dump(model.args, open(os.path.join(savedir, "args.pkl"), "wb"))
# dump human readable args
#open(os.path.join(savedir, "args.txt"), "w").write(str(model.args))
init_from = None
if init_from is not None:
args = pickle.load(open(os.path.join(init_from, "args.pkl"), "rb"))
X = np.random.rand(batch_size, max_obs, n_input)
y = np.random.rand(batch_size, max_obs, n_classes)
seq_length = np.random.randint(16, max_obs, batch_size)
with tf.Session() as sess:
sess.run([model.init_op])
feed = {model.X: X, model.y: y}
# training step
for i in range(1, 30):
train_op, cross_entropy = \
sess.run([model.train_op,
model.cross_entropy], feed_dict=feed)
print("done")
if __name__ == '__main__':
main()