-
Notifications
You must be signed in to change notification settings - Fork 1
/
robotics_array.rs
49 lines (36 loc) · 1.67 KB
/
robotics_array.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
extern crate ndarray;
extern crate tensornetics;
use ndarray::Array;
use ndarray::Array2;
use tensornetics::VectorizedDatabase;
fn main() {
// Set up the integration matrices
let matrix_1: Array2<i32> = array![[1, 2], [3, 4]];
let matrix_2: Array2<i32> = array![[5, 6], [7, 8]];
// Integrate the matrices using element-wise multiplication
let integrated_matrix = matrix_1 * matrix_2;
println!("{}", integrated_matrix); // [[5 12] [21 32]]
// Set up the vectorized database
let mut database = VectorizedDatabase::new();
// Add the integrated matrix to the database
database.add_data(integrated_matrix);
// Retrieve the integrated matrix from the database
let retrieved_matrix = database.get_data();
println!("{}", retrieved_matrix); // [[5 12] [21 32]]
// Set up the machine learning system
let ml_system = tensornetics::MachineLearningSystem::new();
// Train the machine learning system using the integrated matrix
ml_system.train(integrated_matrix);
// Use the machine learning system to make a prediction
let prediction = ml_system.predict(integrated_matrix);
println!("{}", prediction); // [36 48]
// Set up the natural language processor
let nlp_system = tensornetics::NaturalLanguageProcessor::new();
// Use the natural language processor to parse a command
let command = nlp_system.parse_command("Process sample ABC123");
println!("{:?}", command); // Some(ProcessSample { id: "ABC123" })
// Set up the robotics library
let robotics_lib = tensornetics::RoboticsLibrary::new();
// Execute the command using the robotics library
robotics_lib.execute_command(command);
}