-
Notifications
You must be signed in to change notification settings - Fork 0
/
findings_draft.qmd
381 lines (278 loc) · 6.29 KB
/
findings_draft.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
---
title: "Visualising CHD Pathway Inequalities by ethnicity - DRAFT"
lang: en-GB
author: "Jacqueline Grout"
date: last-modified
date-format: "YYYY-MM-DD"
title-block-banner: "#f9bf07"
title-block-banner-color: "#333739"
format:
html:
self-contained: true
grid:
sidebar-width: 200px
body-width: 950px
margin-width: 150px
gutter-width: 1.5rem
embed-resources: true
smooth-scroll: true
theme: cosmo
fontcolor: black
toc: true
toc-location: left
toc-title: Contents
toc-depth: 3
editor: visual
execute:
echo: false
message: false
warning: false
freeze: auto
editor_options:
chunk_output_type: console
css: styles.css
---
```{r}
#| echo: false
library(targets)
library(gt)
library(tidyverse)
library(grid)
library(gridExtra)
```
# Clustering
## Cluster descriptions
The median percentage of each ethnic group for each cluster was calculated and is presented in these charts to describe their respective diversity.
### Cluster 1 - Least diverse
This cluster is the least diverse of the five and the median percentage of White patients is 97% (94% White British).
::: panel-tabset
## Five ethnic groups
```{r}
tar_read(cluster2_treemap_1)
```
## Fourteen ethnic groups
94% White British
```{r}
tar_read(cluster2_eth_chart_1)
```
:::
### Cluster 2
In this cluster the median percentage of White patients is 93% (87% White British). Those patients whose ethnicity is White are more likely to be White Irish or other White ethnicities (0.7% and 4% respectively) when compared to cluster 1. The median percentage of patients with a mixed ethnicity in this cluster is 2%.
::: panel-tabset
## Five ethnic groups
```{r}
tar_read(cluster2_treemap_2)
```
## Fourteen ethnic groups
87% White British
```{r}
tar_read(cluster2_eth_chart_2)
```
:::
### Cluster 3
In this cluster the median percentage of White patients is 78% (69% White British). The median percentage of patients with a mixed ethnicity in this cluster is 3.8%, which is higher than in cluster 2. Indian patients make up 3.3% of the patients, and 2.6% are patients whose ethnicity is Black African.
::: panel-tabset
## Five ethnic groups
```{r}
tar_read(cluster2_treemap_3)
```
## Fourteen ethnic groups
69% White British
```{r}
tar_read(cluster2_eth_chart_3)
```
:::
### Cluster 4
In cluster 4 just over half the patients are White with a median percentage of 55% (35% White British). The ethnic group of White has fewer White British than clusters 1 to 3, with 17% of patients having an ethnicity of White Other The median percentage of patients whose ethnicity is Black African in this cluster is 8.3%, which is higher than in cluster 3 and the median percentage of Black Caribbean patients is 3.9%. The median percentage of Black and Asian is 29% in this cluster.
::: panel-tabset
## Five ethnic groups
```{r}
tar_read(cluster2_treemap_4)
```
## Fourteen ethnic groups
35% White British
```{r}
tar_read(cluster2_eth_chart_4)
```
:::
### Cluster 5 - Most diverse
This cluster is the most diverse. Overall the median percentage of Asian patients in this cluster is 45%. There are 13.3% Indian, 9.7% Pakistani and 2.9% Bangladeshi. Mixed and other ethnic groups form a large proportion of the patients in this cluster.
::: panel-tabset
## Five ethnic groups
```{r}
tar_read(cluster2_treemap_5)
```
## Fourteen ethnic groups
22% White British
```{r}
tar_read(cluster2_eth_chart_5)
```
:::
## Clustered GP Practices
The interactive map below presents each GP practice coloured according to their assigned cluster. Cluster 1 (red) is the least diverse and cluster 5 (orange) is the most diverse.
```{r}
tar_read(cluster2_map)
```
# Rate of activity
### Risk factors
```{r}
tar_read(rate_chart_risk_fact)
```
### Risk factor identification
```{r}
tar_read(rate_chart_risk_fact_ident)
```
### Primary prevention
```{r}
tar_read(rate_chart_prim_prevent)
```
### Disease identification
```{r}
tar_read(rate_chart_disease_ident)
```
### Secondary prevention
```{r}
tar_read(rate_chart_second_prevent)
```
### Tertiary prevention
```{r}
tar_read(rate_chart_tert_prevent)
```
### Intermediate outcome
```{r}
tar_read(rate_chart_int_out)
```
### Full outcomes
```{r}
tar_read(rate_chart_full_out)
```
# Relative Index of Disparity
```{r}
tar_read(ci_iod_chart)
```
::: {.callout-tip icon="false"}
## Confidence Intervals
Confidence intervals are shown in grey. There is 95% confidence that the index of disparity is within this range. **Please disregard the last 4 metrics (related to patient deaths) at this stage.**
:::
# Regional Analysis
## Clusters
The charts below show the distribution of the patients in each NHS region according to the cluster of their GP practice.
::: panel-tabset
## London
```{r}
#1
region_cluster_charts <- tar_read(region_cluster_charts)
region_cluster_charts[2]
```
## South West
```{r}
#2
region_cluster_charts[7]
```
## South East
```{r}
#3
region_cluster_charts[6]
```
## Midlands
```{r}
#4
region_cluster_charts[3]
```
## East of England
```{r}
#5
region_cluster_charts[1]
```
## North West
```{r}
#6
region_cluster_charts[5]
```
## North East and Yorkshire
```{r}
#7
region_cluster_charts[4]
```
:::
## Relative Index of Disparity
::: panel-tabset
## London
```{r}
regional_charts <- tar_read(regional_charts)
regional_charts[1]
```
## South West
```{r}
regional_charts[2]
```
## South East
```{r}
regional_charts[3]
```
## Midlands
```{r}
regional_charts[4]
```
## East of England
```{r}
regional_charts[5]
```
## North West
```{r}
regional_charts[6]
```
## North East and Yorkshire
```{r}
regional_charts[7]
```
:::
## Integrated Care Board (ICB) Analysis
#### Relative Index of Disparity
```{r}
icb_charts <- tar_read(icb_charts)
icb_charts[1]
icb_charts[2]
icb_charts[3]
icb_charts[4]
icb_charts[5]
icb_charts[6]
icb_charts[7]
icb_charts[8]
icb_charts[9]
icb_charts[10]
icb_charts[11]
icb_charts[12]
icb_charts[13]
icb_charts[14]
icb_charts[15]
icb_charts[16]
icb_charts[17]
icb_charts[18]
icb_charts[19]
icb_charts[20]
icb_charts[21]
icb_charts[22]
icb_charts[23]
icb_charts[24]
icb_charts[25]
icb_charts[26]
icb_charts[27]
icb_charts[28]
icb_charts[23]
icb_charts[29]
icb_charts[30]
icb_charts[31]
icb_charts[32]
icb_charts[33]
icb_charts[34]
icb_charts[35]
icb_charts[36]
icb_charts[37]
icb_charts[38]
icb_charts[39]
icb_charts[40]
icb_charts[41]
icb_charts[42]
```
##