-
-
Notifications
You must be signed in to change notification settings - Fork 7.3k
/
n_queens.cpp
128 lines (118 loc) · 3.43 KB
/
n_queens.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
/**
* @file
* @brief [Eight Queens](https://en.wikipedia.org/wiki/Eight_queens_puzzle)
* puzzle
*
* @details
* The **eight queens puzzle** is the problem of placing eight chess queens on
* an 8×8 chessboard so that no two queens threaten each other; thus, a solution
* requires that no two queens share the same row, column, or diagonal. The
* eight queens puzzle is an example of the more general **n queens problem** of
* placing n non-attacking queens on an n×n chessboard, for which solutions
* exist for all natural numbers n with the exception of n = 2 and n = 3.
*
* @author Unknown author
* @author [David Leal](https://github.com/Panquesito7)
*
*/
#include <array>
#include <iostream>
/**
* @namespace backtracking
* @brief Backtracking algorithms
*/
namespace backtracking {
/**
* @namespace n_queens
* @brief Functions for [Eight
* Queens](https://en.wikipedia.org/wiki/Eight_queens_puzzle) puzzle.
*/
namespace n_queens {
/**
* Utility function to print matrix
* @tparam n number of matrix size
* @param board matrix where numbers are saved
*/
template <size_t n>
void printSolution(const std::array<std::array<int, n>, n> &board) {
std::cout << "\n";
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
std::cout << "" << board[i][j] << " ";
}
std::cout << "\n";
}
}
/**
* Check if a queen can be placed on matrix
* @tparam n number of matrix size
* @param board matrix where numbers are saved
* @param row current index in rows
* @param col current index in columns
* @returns `true` if queen can be placed on matrix
* @returns `false` if queen can't be placed on matrix
*/
template <size_t n>
bool isSafe(const std::array<std::array<int, n>, n> &board, const int &row,
const int &col) {
int i = 0, j = 0;
// Check this row on left side
for (i = 0; i < col; i++) {
if (board[row][i]) {
return false;
}
}
// Check upper diagonal on left side
for (i = row, j = col; i >= 0 && j >= 0; i--, j--) {
if (board[i][j]) {
return false;
}
}
// Check lower diagonal on left side
for (i = row, j = col; j >= 0 && i < n; i++, j--) {
if (board[i][j]) {
return false;
}
}
return true;
}
/**
* Solve n queens problem
* @tparam n number of matrix size
* @param board matrix where numbers are saved
* @param col current index in columns
*/
template <size_t n>
void solveNQ(std::array<std::array<int, n>, n> board, const int &col) {
if (col >= n) {
printSolution<n>(board);
return;
}
// Consider this column and try placing
// this queen in all rows one by one
for (int i = 0; i < n; i++) {
// Check if queen can be placed
// on board[i][col]
if (isSafe<n>(board, i, col)) {
// Place this queen in matrix
board[i][col] = 1;
// Recursive to place rest of the queens
solveNQ<n>(board, col + 1);
board[i][col] = 0; // backtrack
}
}
}
} // namespace n_queens
} // namespace backtracking
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
const int n = 4;
std::array<std::array<int, n>, n> board = {
std::array<int, n>({0, 0, 0, 0}), std::array<int, n>({0, 0, 0, 0}),
std::array<int, n>({0, 0, 0, 0}), std::array<int, n>({0, 0, 0, 0})};
backtracking::n_queens::solveNQ<n>(board, 0);
return 0;
}