-
-
Notifications
You must be signed in to change notification settings - Fork 7.3k
/
sudoku_solver.cpp
173 lines (163 loc) · 5.66 KB
/
sudoku_solver.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
/**
* @file
* @brief [Sudoku Solver](https://en.wikipedia.org/wiki/Sudoku) algorithm.
*
* @details
* Sudoku (数独, sūdoku, digit-single) (/suːˈdoʊkuː/, /-ˈdɒk-/, /sə-/,
* originally called Number Place) is a logic-based, combinatorial
* number-placement puzzle. In classic sudoku, the objective is to fill a 9×9
* grid with digits so that each column, each row, and each of the nine 3×3
* subgrids that compose the grid (also called "boxes", "blocks", or "regions")
* contain all of the digits from 1 to 9. The puzzle setter provides a
* partially completed grid, which for a well-posed puzzle has a single
* solution.
*
* @author [DarthCoder3200](https://github.com/DarthCoder3200)
* @author [David Leal](https://github.com/Panquesito7)
*/
#include <array> /// for assert
#include <iostream> /// for IO operations
/**
* @namespace backtracking
* @brief Backtracking algorithms
*/
namespace backtracking {
/**
* @namespace sudoku_solver
* @brief Functions for the [Sudoku
* Solver](https://en.wikipedia.org/wiki/Sudoku) implementation
*/
namespace sudoku_solver {
/**
* @brief Check if it's possible to place a number (`no` parameter)
* @tparam V number of vertices in the array
* @param mat matrix where numbers are saved
* @param i current index in rows
* @param j current index in columns
* @param no number to be added in matrix
* @param n number of times loop will run
* @returns `true` if 'mat' is different from 'no'
* @returns `false` if 'mat' equals to 'no'
*/
template <size_t V>
bool isPossible(const std::array<std::array<int, V>, V> &mat, int i, int j,
int no, int n) {
/// `no` shouldn't be present in either row i or column j
for (int x = 0; x < n; x++) {
if (mat[x][j] == no || mat[i][x] == no) {
return false;
}
}
/// `no` shouldn't be present in the 3*3 subgrid
int sx = (i / 3) * 3;
int sy = (j / 3) * 3;
for (int x = sx; x < sx + 3; x++) {
for (int y = sy; y < sy + 3; y++) {
if (mat[x][y] == no) {
return false;
}
}
}
return true;
}
/**
* @brief Utility function to print the matrix
* @tparam V number of vertices in array
* @param mat matrix where numbers are saved
* @param starting_mat copy of mat, required by printMat for highlighting the
* differences
* @param n number of times loop will run
* @return void
*/
template <size_t V>
void printMat(const std::array<std::array<int, V>, V> &mat,
const std::array<std::array<int, V>, V> &starting_mat, int n) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (starting_mat[i][j] != mat[i][j]) {
std::cout << "\033[93m" << mat[i][j] << "\033[0m"
<< " ";
} else {
std::cout << mat[i][j] << " ";
}
if ((j + 1) % 3 == 0) {
std::cout << '\t';
}
}
if ((i + 1) % 3 == 0) {
std::cout << std::endl;
}
std::cout << std::endl;
}
}
/**
* @brief Main function to implement the Sudoku algorithm
* @tparam V number of vertices in array
* @param mat matrix where numbers are saved
* @param starting_mat copy of mat, required by printMat for highlighting the
* differences
* @param i current index in rows
* @param j current index in columns
* @returns `true` if 'no' was placed
* @returns `false` if 'no' was not placed
*/
template <size_t V>
bool solveSudoku(std::array<std::array<int, V>, V> &mat,
const std::array<std::array<int, V>, V> &starting_mat, int i,
int j) {
/// Base Case
if (i == 9) {
/// Solved for 9 rows already
printMat<V>(mat, starting_mat, 9);
return true;
}
/// Crossed the last Cell in the row
if (j == 9) {
return solveSudoku<V>(mat, starting_mat, i + 1, 0);
}
/// Blue Cell - Skip
if (mat[i][j] != 0) {
return solveSudoku<V>(mat, starting_mat, i, j + 1);
}
/// White Cell
/// Try to place every possible no
for (int no = 1; no <= 9; no++) {
if (isPossible<V>(mat, i, j, no, 9)) {
/// Place the 'no' - assuming a solution will exist
mat[i][j] = no;
bool solution_found = solveSudoku<V>(mat, starting_mat, i, j + 1);
if (solution_found) {
return true;
}
/// Couldn't find a solution
/// loop will place the next `no`.
}
}
/// Solution couldn't be found for any of the numbers provided
mat[i][j] = 0;
return false;
}
} // namespace sudoku_solver
} // namespace backtracking
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
const int V = 9;
std::array<std::array<int, V>, V> mat = {
std::array<int, V>{5, 3, 0, 0, 7, 0, 0, 0, 0},
std::array<int, V>{6, 0, 0, 1, 9, 5, 0, 0, 0},
std::array<int, V>{0, 9, 8, 0, 0, 0, 0, 6, 0},
std::array<int, V>{8, 0, 0, 0, 6, 0, 0, 0, 3},
std::array<int, V>{4, 0, 0, 8, 0, 3, 0, 0, 1},
std::array<int, V>{7, 0, 0, 0, 2, 0, 0, 0, 6},
std::array<int, V>{0, 6, 0, 0, 0, 0, 2, 8, 0},
std::array<int, V>{0, 0, 0, 4, 1, 9, 0, 0, 5},
std::array<int, V>{0, 0, 0, 0, 8, 0, 0, 7, 9}};
backtracking::sudoku_solver::printMat<V>(mat, mat, 9);
std::cout << "Solution " << std::endl;
std::array<std::array<int, V>, V> starting_mat = mat;
backtracking::sudoku_solver::solveSudoku<V>(mat, starting_mat, 0, 0);
return 0;
}