-
-
Notifications
You must be signed in to change notification settings - Fork 7.3k
/
travelling_salesman_using_bit_manipulation.cpp
142 lines (136 loc) · 5.31 KB
/
travelling_salesman_using_bit_manipulation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
/**
* @file
* @brief Implementation to
* [Travelling Salesman problem using bit-masking]
* (https://www.geeksforgeeks.org/travelling-salesman-problem-set-1/)
*
* @details
* Given the distance/cost(as and adjacency matrix) between each city/node to
* the other city/node , the problem is to find the shortest possible route that
* visits every city exactly once and returns to the starting point or we can
* say the minimum cost of whole tour.
*
* Explanation:
* INPUT -> You are given with a adjacency matrix A = {} which contains the
* distance between two cities/node.
*
* OUTPUT -> Minimum cost of whole tour from starting point
*
* Worst Case Time Complexity: O(n^2 * 2^n)
* Space complexity: O(n)
* @author [Utkarsh Yadav](https://github.com/Rytnix)
*/
#include <algorithm> /// for std::min
#include <cassert> /// for assert
#include <cstdint>
#include <iostream> /// for IO operations
#include <limits> /// for limits of integral types
#include <vector> /// for std::vector
/**
* @namespace bit_manipulation
* @brief Bit manipulation algorithms
*/
namespace bit_manipulation {
/**
* @namespace travellingSalesman_bitmanipulation
* @brief Functions for the [Travelling Salesman
* Bitmask](https://www.geeksforgeeks.org/travelling-salesman-problem-set-1/)
* implementation
*/
namespace travelling_salesman_using_bit_manipulation {
/**
* @brief The function implements travellingSalesman using bitmanipulation
* @param dist is the cost to reach between two cities/nodes
* @param setOfCitites represents the city in bit form.\
* @param city is taken to track the current city movement.
* @param n is the no of citys .
* @param dp vector is used to keep a record of state to avoid the
* recomputation.
* @returns minimum cost of traversing whole nodes/cities from starting point
* back to starting point
*/
std::uint64_t travelling_salesman_using_bit_manipulation(
std::vector<std::vector<uint32_t>>
dist, // dist is the adjacency matrix containing the distance.
// setOfCities as a bit represent the cities/nodes. Ex: if
// setOfCities = 2 => 0010(in binary) means representing the
// city/node B if city/nodes are represented as D->C->B->A.
std::uint64_t setOfCities,
std::uint64_t city, // city is taken to track our current city/node
// movement,where we are currently.
std::uint64_t n, // n is the no of cities we have.
std::vector<std::vector<uint32_t>>
&dp) // dp is taken to memorize the state to avoid recomputition
{
// base case;
if (setOfCities == (1 << n) - 1) { // we have covered all the cities
return dist[city][0]; // return the cost from the current city to the
// original city.
}
if (dp[setOfCities][city] != -1) {
return dp[setOfCities][city];
}
// otherwise try all possible options
uint64_t ans = 2147483647;
for (int choice = 0; choice < n; choice++) {
// check if the city is visited or not.
if ((setOfCities & (1 << choice)) ==
0) { // this means that this perticular city is not visited.
std::uint64_t subProb =
dist[city][choice] +
travelling_salesman_using_bit_manipulation(
dist, setOfCities | (1 << choice), choice, n, dp);
// Here we are doing a recursive call to tsp with the updated set of
// city/node and choice which tells that where we are currently.
ans = std::min(ans, subProb);
}
}
dp[setOfCities][city] = ans;
return ans;
}
} // namespace travelling_salesman_using_bit_manipulation
} // namespace bit_manipulation
/**
* @brief Self-test implementations
* @returns void
*/
static void test() {
// 1st test-case
std::vector<std::vector<uint32_t>> dist = {
{0, 20, 42, 35}, {20, 0, 30, 34}, {42, 30, 0, 12}, {35, 34, 12, 0}};
uint32_t V = dist.size();
std::vector<std::vector<uint32_t>> dp(1 << V, std::vector<uint32_t>(V, -1));
assert(bit_manipulation::travelling_salesman_using_bit_manipulation::
travelling_salesman_using_bit_manipulation(dist, 1, 0, V, dp) ==
97);
std::cout << "1st test-case: passed!"
<< "\n";
// 2nd test-case
dist = {{0, 5, 10, 15}, {5, 0, 20, 30}, {10, 20, 0, 35}, {15, 30, 35, 0}};
V = dist.size();
std::vector<std::vector<uint32_t>> dp1(1 << V,
std::vector<uint32_t>(V, -1));
assert(bit_manipulation::travelling_salesman_using_bit_manipulation::
travelling_salesman_using_bit_manipulation(dist, 1, 0, V, dp1) ==
75);
std::cout << "2nd test-case: passed!"
<< "\n";
// 3rd test-case
dist = {{0, 10, 15, 20}, {10, 0, 35, 25}, {15, 35, 0, 30}, {20, 25, 30, 0}};
V = dist.size();
std::vector<std::vector<uint32_t>> dp2(1 << V,
std::vector<uint32_t>(V, -1));
assert(bit_manipulation::travelling_salesman_using_bit_manipulation::
travelling_salesman_using_bit_manipulation(dist, 1, 0, V, dp2) ==
80);
std::cout << "3rd test-case: passed!"
<< "\n";
}
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
test(); // run self-test implementations
return 0;
}