-
-
Notifications
You must be signed in to change notification settings - Fork 7.3k
/
stack_using_queue.cpp
119 lines (105 loc) · 3.47 KB
/
stack_using_queue.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
/**
* @brief Stack Data Structure Using the Queue Data Structure
* @details
* Using 2 Queues inside the Stack class, we can easily implement Stack
* data structure with heavy computation in push function.
*
* References used:
* [StudyTonight](https://www.studytonight.com/data-structures/stack-using-queue)
* @author [tushar2407](https://github.com/tushar2407)
*/
#include <cassert> /// for assert
#include <cstdint>
#include <iostream> /// for IO operations
#include <queue> /// for queue data structure
/**
* @namespace data_structures
* @brief Data structures algorithms
*/
namespace data_structures {
/**
* @namespace stack_using_queue
* @brief Functions for the [Stack Using
* Queue](https://www.studytonight.com/data-structures/stack-using-queue)
* implementation
*/
namespace stack_using_queue {
/**
* @brief Stack Class implementation for basic methods of Stack Data Structure.
*/
struct Stack {
std::queue<int64_t> main_q; ///< stores the current state of the stack
std::queue<int64_t> auxiliary_q; ///< used to carry out intermediate
///< operations to implement stack
uint32_t current_size = 0; ///< stores the current size of the stack
/**
* Returns the top most element of the stack
* @returns top element of the queue
*/
int top() { return main_q.front(); }
/**
* @brief Inserts an element to the top of the stack.
* @param val the element that will be inserted into the stack
* @returns void
*/
void push(int val) {
auxiliary_q.push(val);
while (!main_q.empty()) {
auxiliary_q.push(main_q.front());
main_q.pop();
}
swap(main_q, auxiliary_q);
current_size++;
}
/**
* @brief Removes the topmost element from the stack
* @returns void
*/
void pop() {
if (main_q.empty()) {
return;
}
main_q.pop();
current_size--;
}
/**
* @brief Utility function to return the current size of the stack
* @returns current size of stack
*/
int size() { return current_size; }
};
} // namespace stack_using_queue
} // namespace data_structures
/**
* @brief Self-test implementations
* @returns void
*/
static void test() {
data_structures::stack_using_queue::Stack s;
s.push(1); /// insert an element into the stack
s.push(2); /// insert an element into the stack
s.push(3); /// insert an element into the stack
assert(s.size() == 3); /// size should be 3
assert(s.top() == 3); /// topmost element in the stack should be 3
s.pop(); /// remove the topmost element from the stack
assert(s.top() == 2); /// topmost element in the stack should now be 2
s.pop(); /// remove the topmost element from the stack
assert(s.top() == 1);
s.push(5); /// insert an element into the stack
assert(s.top() == 5); /// topmost element in the stack should now be 5
s.pop(); /// remove the topmost element from the stack
assert(s.top() == 1); /// topmost element in the stack should now be 1
assert(s.size() == 1); /// size should be 1
}
/**
* @brief Main function
* Creates a stack and pushed some value into it.
* Through a series of push and pop functions on stack,
* it demostrates the functionality of the custom stack
* declared above.
* @returns 0 on exit
*/
int main() {
test(); // run self-test implementations
return 0;
}