-
-
Notifications
You must be signed in to change notification settings - Fork 7.3k
/
bidirectional_dijkstra.cpp
294 lines (262 loc) · 10.9 KB
/
bidirectional_dijkstra.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
/**
* @file
* @brief [Bidirectional Dijkstra Shortest Path Algorithm]
* (https://www.coursera.org/learn/algorithms-on-graphs/lecture/7ml18/bidirectional-dijkstra)
*
* @author [Marinovksy](http://github.com/Marinovsky)
*
* @details
* This is basically the same Dijkstra Algorithm but faster because it goes from
* the source to the target and from target to the source and stops when
* finding a vertex visited already by the direct search or the reverse one.
* Here some simulations of it:
* https://www.youtube.com/watch?v=DINCL5cd_w0&t=24s
*/
#include <cassert> /// for assert
#include <cstdint>
#include <iostream> /// for io operations
#include <limits> /// for variable INF
#include <queue> /// for the priority_queue of distances
#include <utility> /// for make_pair function
#include <vector> /// for store the graph, the distances, and the path
constexpr int64_t INF = std::numeric_limits<int64_t>::max();
/**
* @namespace graph
* @brief Graph Algorithms
*/
namespace graph {
/**
* @namespace bidirectional_dijkstra
* @brief Functions for [Bidirectional Dijkstra Shortest Path]
* (https://www.coursera.org/learn/algorithms-on-graphs/lecture/7ml18/bidirectional-dijkstra)
* algorithm
*/
namespace bidirectional_dijkstra {
/**
* @brief Function that add edge between two nodes or vertices of graph
*
* @param adj1 adjacency list for the direct search
* @param adj2 adjacency list for the reverse search
* @param u any node or vertex of graph
* @param v any node or vertex of graph
*/
void addEdge(std::vector<std::vector<std::pair<uint64_t, uint64_t>>> *adj1,
std::vector<std::vector<std::pair<uint64_t, uint64_t>>> *adj2,
uint64_t u, uint64_t v, uint64_t w) {
(*adj1)[u - 1].push_back(std::make_pair(v - 1, w));
(*adj2)[v - 1].push_back(std::make_pair(u - 1, w));
// (*adj)[v - 1].push_back(std::make_pair(u - 1, w));
}
/**
* @brief This function returns the shortest distance from the source
* to the target if there is path between vertices 's' and 't'.
*
* @param workset_ vertices visited in the search
* @param distance_ vector of distances from the source to the target and
* from the target to the source
*
*/
uint64_t Shortest_Path_Distance(
const std::vector<uint64_t> &workset_,
const std::vector<std::vector<uint64_t>> &distance_) {
int64_t distance = INF;
for (uint64_t i : workset_) {
if (distance_[0][i] + distance_[1][i] < distance) {
distance = distance_[0][i] + distance_[1][i];
}
}
return distance;
}
/**
* @brief Function runs the dijkstra algorithm for some source vertex and
* target vertex in the graph and returns the shortest distance of target
* from the source.
*
* @param adj1 input graph
* @param adj2 input graph reversed
* @param s source vertex
* @param t target vertex
*
* @return shortest distance if target is reachable from source else -1 in
* case if target is not reachable from source.
*/
int Bidijkstra(std::vector<std::vector<std::pair<uint64_t, uint64_t>>> *adj1,
std::vector<std::vector<std::pair<uint64_t, uint64_t>>> *adj2,
uint64_t s, uint64_t t) {
/// n denotes the number of vertices in graph
uint64_t n = adj1->size();
/// setting all the distances initially to INF
std::vector<std::vector<uint64_t>> dist(2, std::vector<uint64_t>(n, INF));
/// creating a a vector of min heap using priority queue
/// pq[0] contains the min heap for the direct search
/// pq[1] contains the min heap for the reverse search
/// first element of pair contains the distance
/// second element of pair contains the vertex
std::vector<
std::priority_queue<std::pair<uint64_t, uint64_t>,
std::vector<std::pair<uint64_t, uint64_t>>,
std::greater<std::pair<uint64_t, uint64_t>>>>
pq(2);
/// vector for store the nodes or vertices in the shortest path
std::vector<uint64_t> workset(n);
/// vector for store the nodes or vertices visited
std::vector<bool> visited(n);
/// pushing the source vertex 's' with 0 distance in pq[0] min heap
pq[0].push(std::make_pair(0, s));
/// marking the distance of source as 0
dist[0][s] = 0;
/// pushing the target vertex 't' with 0 distance in pq[1] min heap
pq[1].push(std::make_pair(0, t));
/// marking the distance of target as 0
dist[1][t] = 0;
while (true) {
/// direct search
// If pq[0].size() is equal to zero then the node/ vertex is not
// reachable from s
if (pq[0].size() == 0) {
break;
}
/// second element of pair denotes the node / vertex
uint64_t currentNode = pq[0].top().second;
/// first element of pair denotes the distance
uint64_t currentDist = pq[0].top().first;
pq[0].pop();
/// for all the reachable vertex from the currently exploring vertex
/// we will try to minimize the distance
for (std::pair<int, int> edge : (*adj1)[currentNode]) {
/// minimizing distances
if (currentDist + edge.second < dist[0][edge.first]) {
dist[0][edge.first] = currentDist + edge.second;
pq[0].push(std::make_pair(dist[0][edge.first], edge.first));
}
}
// store the processed node/ vertex
workset.push_back(currentNode);
/// check if currentNode has already been visited
if (visited[currentNode] == 1) {
return Shortest_Path_Distance(workset, dist);
}
visited[currentNode] = true;
/// reversed search
// If pq[1].size() is equal to zero then the node/ vertex is not
// reachable from t
if (pq[1].size() == 0) {
break;
}
/// second element of pair denotes the node / vertex
currentNode = pq[1].top().second;
/// first element of pair denotes the distance
currentDist = pq[1].top().first;
pq[1].pop();
/// for all the reachable vertex from the currently exploring vertex
/// we will try to minimize the distance
for (std::pair<int, int> edge : (*adj2)[currentNode]) {
/// minimizing distances
if (currentDist + edge.second < dist[1][edge.first]) {
dist[1][edge.first] = currentDist + edge.second;
pq[1].push(std::make_pair(dist[1][edge.first], edge.first));
}
}
// store the processed node/ vertex
workset.push_back(currentNode);
/// check if currentNode has already been visited
if (visited[currentNode] == 1) {
return Shortest_Path_Distance(workset, dist);
}
visited[currentNode] = true;
}
return -1;
}
} // namespace bidirectional_dijkstra
} // namespace graph
/**
* @brief Function to test the
* provided algorithm above
* @returns void
*/
static void tests() {
std::cout << "Initiatinig Predefined Tests..." << std::endl;
std::cout << "Initiating Test 1..." << std::endl;
std::vector<std::vector<std::pair<uint64_t, uint64_t>>> adj1_1(
4, std::vector<std::pair<uint64_t, uint64_t>>());
std::vector<std::vector<std::pair<uint64_t, uint64_t>>> adj1_2(
4, std::vector<std::pair<uint64_t, uint64_t>>());
graph::bidirectional_dijkstra::addEdge(&adj1_1, &adj1_2, 1, 2, 1);
graph::bidirectional_dijkstra::addEdge(&adj1_1, &adj1_2, 4, 1, 2);
graph::bidirectional_dijkstra::addEdge(&adj1_1, &adj1_2, 2, 3, 2);
graph::bidirectional_dijkstra::addEdge(&adj1_1, &adj1_2, 1, 3, 5);
uint64_t s = 1, t = 3;
assert(graph::bidirectional_dijkstra::Bidijkstra(&adj1_1, &adj1_2, s - 1,
t - 1) == 3);
std::cout << "Test 1 Passed..." << std::endl;
s = 4, t = 3;
std::cout << "Initiating Test 2..." << std::endl;
assert(graph::bidirectional_dijkstra::Bidijkstra(&adj1_1, &adj1_2, s - 1,
t - 1) == 5);
std::cout << "Test 2 Passed..." << std::endl;
std::vector<std::vector<std::pair<uint64_t, uint64_t>>> adj2_1(
5, std::vector<std::pair<uint64_t, uint64_t>>());
std::vector<std::vector<std::pair<uint64_t, uint64_t>>> adj2_2(
5, std::vector<std::pair<uint64_t, uint64_t>>());
graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 1, 2, 4);
graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 1, 3, 2);
graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 2, 3, 2);
graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 3, 2, 1);
graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 2, 4, 2);
graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 3, 5, 4);
graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 5, 4, 1);
graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 2, 5, 3);
graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 3, 4, 4);
s = 1, t = 5;
std::cout << "Initiating Test 3..." << std::endl;
assert(graph::bidirectional_dijkstra::Bidijkstra(&adj2_1, &adj2_2, s - 1,
t - 1) == 6);
std::cout << "Test 3 Passed..." << std::endl;
std::cout << "All Test Passed..." << std::endl << std::endl;
}
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
tests(); // running predefined tests
uint64_t vertices = uint64_t();
uint64_t edges = uint64_t();
std::cout << "Enter the number of vertices : ";
std::cin >> vertices;
std::cout << "Enter the number of edges : ";
std::cin >> edges;
std::vector<std::vector<std::pair<uint64_t, uint64_t>>> adj1(
vertices, std::vector<std::pair<uint64_t, uint64_t>>());
std::vector<std::vector<std::pair<uint64_t, uint64_t>>> adj2(
vertices, std::vector<std::pair<uint64_t, uint64_t>>());
uint64_t u = uint64_t(), v = uint64_t(), w = uint64_t();
std::cout << "Enter the edges by three integers in this form: u v w "
<< std::endl;
std::cout << "Example: if there is and edge between node 1 and node 4 with "
"weight 7 enter: 1 4 7, and then press enter"
<< std::endl;
while (edges--) {
std::cin >> u >> v >> w;
graph::bidirectional_dijkstra::addEdge(&adj1, &adj2, u, v, w);
if (edges != 0) {
std::cout << "Enter the next edge" << std::endl;
}
}
uint64_t s = uint64_t(), t = uint64_t();
std::cout
<< "Enter the source node and the target node separated by a space"
<< std::endl;
std::cout << "Example: If the source node is 5 and the target node is 6 "
"enter: 5 6 and press enter"
<< std::endl;
std::cin >> s >> t;
int dist =
graph::bidirectional_dijkstra::Bidijkstra(&adj1, &adj2, s - 1, t - 1);
if (dist == -1) {
std::cout << "Target not reachable from source" << std::endl;
} else {
std::cout << "Shortest Path Distance : " << dist << std::endl;
}
return 0;
}