-
-
Notifications
You must be signed in to change notification settings - Fork 7.3k
/
breadth_first_search.cpp
204 lines (187 loc) · 6.51 KB
/
breadth_first_search.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
/**
*
* \file
* \brief [Breadth First Search Algorithm
* (Breadth First Search)](https://en.wikipedia.org/wiki/Breadth-first_search)
*
* \author [Ayaan Khan](https://github.com/ayaankhan98)
* \author [Aman Kumar Pandey](https://github.com/gpamangkp)
*
*
* \details
* Breadth First Search also quoted as BFS is a Graph Traversal Algorithm.
* Time Complexity O(|V| + |E|) where V are the number of vertices and E
* are the number of edges in the graph.
*
* Applications of Breadth First Search are
*
* 1. Finding shortest path between two vertices say u and v, with path
* length measured by number of edges (an advantage over depth first
* search algorithm)
* 2. Ford-Fulkerson Method for computing the maximum flow in a flow network.
* 3. Testing bipartiteness of a graph.
* 4. Cheney's Algorithm, Copying garbage collection.
*
* And there are many more...
*
* <h4>working</h4>
* In the implementation below we first created a graph using the adjacency
* list representation of graph.
* Breadth First Search Works as follows
* it requires a vertex as a start vertex, Start vertex is that vertex
* from where you want to start traversing the graph.
* We maintain a bool array or a vector to keep track of the vertices
* which we have visited so that we do not traverse the visited vertices
* again and again and eventually fall into an infinite loop. Along with this
* boolen array we use a Queue.
*
* 1. First we mark the start vertex as visited.
* 2. Push this visited vertex in the Queue.
* 3. while the queue is not empty we repeat the following steps
*
* 1. Take out an element from the front of queue
* 2. Explore the adjacency list of this vertex
* if element in the adjacency list is not visited then we
* push that element into the queue and mark this as visited
*
*/
#include <algorithm>
#include <cassert>
#include <iostream>
#include <list>
#include <map>
#include <queue>
#include <string>
#include <vector>
/**
* \namespace graph
* \brief Graph algorithms
*/
namespace graph {
/* Class Graph definition */
template <typename T>
class Graph {
/**
* adjacency_list maps every vertex to the list of its neighbours in the
* order in which they are added.
*/
std::map<T, std::list<T> > adjacency_list;
public:
Graph() = default;
;
void add_edge(T u, T v, bool bidir = true) {
/**
* add_edge(u,v,bidir) is used to add an edge between node u and
* node v by default , bidir is made true , i.e graph is
* bidirectional . It means if edge(u,v) is added then u-->v and
* v-->u both edges exist.
*
* to make the graph unidirectional pass the third parameter of
* add_edge as false which will
*/
adjacency_list[u].push_back(v); // u-->v edge added
if (bidir == true) {
// if graph is bidirectional
adjacency_list[v].push_back(u); // v-->u edge added
}
}
/**
* this function performs the breadth first search on graph and return a
* mapping which maps the nodes to a boolean value representing whether the
* node was traversed or not.
*/
std::map<T, bool> breadth_first_search(T src) {
/// mapping to keep track of all visited nodes
std::map<T, bool> visited;
/// initialise every possible vertex to map to false
/// initially none of the vertices are unvisited
for (auto const &adjlist : adjacency_list) {
visited[adjlist.first] = false;
for (auto const &node : adjacency_list[adjlist.first]) {
visited[node] = false;
}
}
/// queue to store the nodes which are yet to be traversed
std::queue<T> tracker;
/// push the source vertex to queue to begin traversing
tracker.push(src);
/// mark the source vertex as visited
visited[src] = true;
while (!tracker.empty()) {
/// traverse the graph till no connected vertex are left
/// extract a node from queue for further traversal
T node = tracker.front();
/// remove the node from the queue
tracker.pop();
for (T const &neighbour : adjacency_list[node]) {
/// check every vertex connected to the node which are still
/// unvisited
if (!visited[neighbour]) {
/// if the neighbour is unvisited , push it into the queue
tracker.push(neighbour);
/// mark the neighbour as visited
visited[neighbour] = true;
}
}
}
return visited;
}
};
/* Class definition ends */
} // namespace graph
/** Test function */
static void tests() {
/// Test 1 Begin
graph::Graph<int> g;
std::map<int, bool> correct_result;
g.add_edge(0, 1);
g.add_edge(1, 2);
g.add_edge(2, 3);
correct_result[0] = true;
correct_result[1] = true;
correct_result[2] = true;
correct_result[3] = true;
std::map<int, bool> returned_result = g.breadth_first_search(2);
assert(returned_result == correct_result);
std::cout << "Test 1 Passed..." << std::endl;
/// Test 2 Begin
returned_result = g.breadth_first_search(0);
assert(returned_result == correct_result);
std::cout << "Test 2 Passed..." << std::endl;
/// Test 3 Begins
graph::Graph<std::string> g2;
g2.add_edge("Gorakhpur", "Lucknow", false);
g2.add_edge("Gorakhpur", "Kanpur", false);
g2.add_edge("Lucknow", "Agra", false);
g2.add_edge("Kanpur", "Agra", false);
g2.add_edge("Lucknow", "Prayagraj", false);
g2.add_edge("Agra", "Noida", false);
std::map<std::string, bool> correct_res;
std::map<std::string, bool> returned_res =
g2.breadth_first_search("Kanpur");
correct_res["Gorakhpur"] = false;
correct_res["Lucknow"] = false;
correct_res["Kanpur"] = true;
correct_res["Agra"] = true;
correct_res["Prayagraj"] = false;
correct_res["Noida"] = true;
assert(correct_res == returned_res);
std::cout << "Test 3 Passed..." << std::endl;
}
/** Main function */
int main() {
tests();
size_t edges = 0;
std::cout << "Enter the number of edges: ";
std::cin >> edges;
graph::Graph<int> g;
std::cout << "Enter space-separated pairs of vertices that form edges: "
<< std::endl;
while (edges--) {
int u = 0, v = 0;
std::cin >> u >> v;
g.add_edge(u, v);
}
g.breadth_first_search(0);
return 0;
}