-
-
Notifications
You must be signed in to change notification settings - Fork 7.3k
/
binary_exponent.cpp
71 lines (66 loc) · 1.77 KB
/
binary_exponent.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
/**
* @file
* @brief C++ Program to find Binary Exponent Iteratively and Recursively.
*
* Calculate \f$a^b\f$ in \f$O(\log(b))\f$ by converting \f$b\f$ to a
* binary number. Binary exponentiation is also known as exponentiation by
* squaring.
* @note This is a far better approach compared to naive method which
* provide \f$O(b)\f$ operations.
*
* Example:
* </br>10 in base 2 is 1010.
* \f{eqnarray*}{
* 2^{10_d} &=& 2^{1010_b} = 2^8 * 2^2\\
* 2^1 &=& 2\\
* 2^2 &=& (2^1)^2 = 2^2 = 4\\
* 2^4 &=& (2^2)^2 = 4^2 = 16\\
* 2^8 &=& (2^4)^2 = 16^2 = 256\\
* \f}
* Hence to calculate 2^10 we only need to multiply \f$2^8\f$ and \f$2^2\f$
* skipping \f$2^1\f$ and \f$2^4\f$.
*/
#include <iostream>
/// Recursive function to calculate exponent in \f$O(\log(n))\f$ using binary
/// exponent.
int binExpo(int a, int b) {
if (b == 0) {
return 1;
}
int res = binExpo(a, b / 2);
if (b % 2) {
return res * res * a;
} else {
return res * res;
}
}
/// Iterative function to calculate exponent in \f$O(\log(n))\f$ using binary
/// exponent.
int binExpo_alt(int a, int b) {
int res = 1;
while (b > 0) {
if (b % 2) {
res = res * a;
}
a = a * a;
b /= 2;
}
return res;
}
/// Main function
int main() {
int a, b;
/// Give two numbers a, b
std::cin >> a >> b;
if (a == 0 && b == 0) {
std::cout << "Math error" << std::endl;
} else if (b < 0) {
std::cout << "Exponent must be positive !!" << std::endl;
} else {
int resRecurse = binExpo(a, b);
/// int resIterate = binExpo_alt(a, b);
/// Result of a^b (where '^' denotes exponentiation)
std::cout << resRecurse << std::endl;
/// std::cout << resIterate << std::endl;
}
}