-
-
Notifications
You must be signed in to change notification settings - Fork 7.3k
/
composite_simpson_rule.cpp
206 lines (189 loc) · 7.7 KB
/
composite_simpson_rule.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
/**
* @file
* @brief Implementation of the Composite Simpson Rule for the approximation
*
* @details The following is an implementation of the Composite Simpson Rule for
* the approximation of definite integrals. More info -> wiki:
* https://en.wikipedia.org/wiki/Simpson%27s_rule#Composite_Simpson's_rule
*
* The idea is to split the interval in an EVEN number N of intervals and use as
* interpolation points the xi for which it applies that xi = x0 + i*h, where h
* is a step defined as h = (b-a)/N where a and b are the first and last points
* of the interval of the integration [a, b].
*
* We create a table of the xi and their corresponding f(xi) values and we
* evaluate the integral by the formula: I = h/3 * {f(x0) + 4*f(x1) + 2*f(x2) +
* ... + 2*f(xN-2) + 4*f(xN-1) + f(xN)}
*
* That means that the first and last indexed i f(xi) are multiplied by 1,
* the odd indexed f(xi) by 4 and the even by 2.
*
* In this program there are 4 sample test functions f, g, k, l that are
* evaluated in the same interval.
*
* Arguments can be passed as parameters from the command line argv[1] = N,
* argv[2] = a, argv[3] = b
*
* N must be even number and a<b.
*
* In the end of the main() i compare the program's result with the one from
* mathematical software with 2 decimal points margin.
*
* Add sample function by replacing one of the f, g, k, l and the assert
*
* @author [ggkogkou](https://github.com/ggkogkou)
*
*/
#include <cassert> /// for assert
#include <cmath> /// for math functions
#include <cmath>
#include <cstdint> /// for integer allocation
#include <cstdlib> /// for std::atof
#include <functional> /// for std::function
#include <iostream> /// for IO operations
#include <map> /// for std::map container
/**
* @namespace numerical_methods
* @brief Numerical algorithms/methods
*/
namespace numerical_methods {
/**
* @namespace simpson_method
* @brief Contains the Simpson's method implementation
*/
namespace simpson_method {
/**
* @fn double evaluate_by_simpson(int N, double h, double a,
* std::function<double (double)> func)
* @brief Calculate integral or assert if integral is not a number (Nan)
* @param N number of intervals
* @param h step
* @param a x0
* @param func: choose the function that will be evaluated
* @returns the result of the integration
*/
double evaluate_by_simpson(std::int32_t N, double h, double a,
const std::function<double(double)>& func) {
std::map<std::int32_t, double>
data_table; // Contains the data points. key: i, value: f(xi)
double xi = a; // Initialize xi to the starting point x0 = a
// Create the data table
double temp = NAN;
for (std::int32_t i = 0; i <= N; i++) {
temp = func(xi);
data_table.insert(
std::pair<std::int32_t, double>(i, temp)); // add i and f(xi)
xi += h; // Get the next point xi for the next iteration
}
// Evaluate the integral.
// Remember: f(x0) + 4*f(x1) + 2*f(x2) + ... + 2*f(xN-2) + 4*f(xN-1) + f(xN)
double evaluate_integral = 0;
for (std::int32_t i = 0; i <= N; i++) {
if (i == 0 || i == N) {
evaluate_integral += data_table.at(i);
} else if (i % 2 == 1) {
evaluate_integral += 4 * data_table.at(i);
} else {
evaluate_integral += 2 * data_table.at(i);
}
}
// Multiply by the coefficient h/3
evaluate_integral *= h / 3;
// If the result calculated is nan, then the user has given wrong input
// interval.
assert(!std::isnan(evaluate_integral) &&
"The definite integral can't be evaluated. Check the validity of "
"your input.\n");
// Else return
return evaluate_integral;
}
/**
* @fn double f(double x)
* @brief A function f(x) that will be used to test the method
* @param x The independent variable xi
* @returns the value of the dependent variable yi = f(xi)
*/
double f(double x) { return std::sqrt(x) + std::log(x); }
/** @brief Another test function */
double g(double x) { return std::exp(-x) * (4 - std::pow(x, 2)); }
/** @brief Another test function */
double k(double x) { return std::sqrt(2 * std::pow(x, 3) + 3); }
/** @brief Another test function*/
double l(double x) { return x + std::log(2 * x + 1); }
} // namespace simpson_method
} // namespace numerical_methods
/**
* \brief Self-test implementations
* @param N is the number of intervals
* @param h is the step
* @param a is x0
* @param b is the end of the interval
* @param used_argv_parameters is 'true' if argv parameters are given and
* 'false' if not
*/
static void test(std::int32_t N, double h, double a, double b,
bool used_argv_parameters) {
// Call the functions and find the integral of each function
double result_f = numerical_methods::simpson_method::evaluate_by_simpson(
N, h, a, numerical_methods::simpson_method::f);
assert((used_argv_parameters || (result_f >= 4.09 && result_f <= 4.10)) &&
"The result of f(x) is wrong");
std::cout << "The result of integral f(x) on interval [" << a << ", " << b
<< "] is equal to: " << result_f << std::endl;
double result_g = numerical_methods::simpson_method::evaluate_by_simpson(
N, h, a, numerical_methods::simpson_method::g);
assert((used_argv_parameters || (result_g >= 0.27 && result_g <= 0.28)) &&
"The result of g(x) is wrong");
std::cout << "The result of integral g(x) on interval [" << a << ", " << b
<< "] is equal to: " << result_g << std::endl;
double result_k = numerical_methods::simpson_method::evaluate_by_simpson(
N, h, a, numerical_methods::simpson_method::k);
assert((used_argv_parameters || (result_k >= 9.06 && result_k <= 9.07)) &&
"The result of k(x) is wrong");
std::cout << "The result of integral k(x) on interval [" << a << ", " << b
<< "] is equal to: " << result_k << std::endl;
double result_l = numerical_methods::simpson_method::evaluate_by_simpson(
N, h, a, numerical_methods::simpson_method::l);
assert((used_argv_parameters || (result_l >= 7.16 && result_l <= 7.17)) &&
"The result of l(x) is wrong");
std::cout << "The result of integral l(x) on interval [" << a << ", " << b
<< "] is equal to: " << result_l << std::endl;
}
/**
* @brief Main function
* @param argc commandline argument count (ignored)
* @param argv commandline array of arguments (ignored)
* @returns 0 on exit
*/
int main(int argc, char** argv) {
std::int32_t N = 16; /// Number of intervals to divide the integration
/// interval. MUST BE EVEN
double a = 1, b = 3; /// Starting and ending point of the integration in
/// the real axis
double h = NAN; /// Step, calculated by a, b and N
bool used_argv_parameters =
false; // If argv parameters are used then the assert must be omitted
// for the tst cases
// Get user input (by the command line parameters or the console after
// displaying messages)
if (argc == 4) {
N = std::atoi(argv[1]);
a = std::atof(argv[2]);
b = std::atof(argv[3]);
// Check if a<b else abort
assert(a < b && "a has to be less than b");
assert(N > 0 && "N has to be > 0");
if (N < 16 || a != 1 || b != 3) {
used_argv_parameters = true;
}
std::cout << "You selected N=" << N << ", a=" << a << ", b=" << b
<< std::endl;
} else {
std::cout << "Default N=" << N << ", a=" << a << ", b=" << b
<< std::endl;
}
// Find the step
h = (b - a) / N;
test(N, h, a, b, used_argv_parameters); // run self-test implementations
return 0;
}